Marburg virus disease: origins, reservoirs, transmission and guidelines
Marburg virus is a Filovirus which, along with Ebola virus, can cause a severe and often fatal viral haemorrhagic fever (VHF).
Marburg virus belongs to the Filovirus family, along with Ebola virus. It can cause a severe and often fatal haemorrhagic fever called Marburg virus disease (MVD) which is clinically almost indistinguishable from Ebola virus disease.
Marburg virus is known to affect both humans and non-human primates.
MVD was first recognised in 1967, when outbreaks of haemorrhagic fever occurred simultaneously in laboratories in both Marburg and Frankfurt in Germany, and Belgrade in Yugoslavia (now Serbia). A total of 31 people became ill, including 25 laboratory workers, medical personnel and a family member who had cared for them. The laboratory workers all had contact with the blood, organs or cell-cultures from a batch of imported African green monkeys from north-western Uganda.
It is generally accepted that Marburg virus is a zoonotic (animal borne) virus. Fruit bats (Rousettus aegyptii) are considered to be the natural host of the virus. Monkeys are susceptible to Marburg virus infection but are not considered the reservoir hosts as they usually die rapidly once infected. Experimental infections have shown how pigs are susceptible to filovirus infection and can shed the virus.
Epidemiology
Recorded cases of MVD are rare.
Outbreaks and sporadic cases have been reported in Angola, Democratic Republic of Congo, Equatorial Guinea, Kenya, Ghana, Guinea, Uganda, South Africa (in a person who had recently travelled to Zimbabwe) and Tanzania.
The largest outbreak on record to date occurred in 2005 in Angola and involved 374 cases, including 329 deaths.
Two unrelated sporadic cases in travellers occurred during 2008 following visits to the ‘python cave’ in the Maramagambo Forest in western Uganda; this cave is home to a large colony of Egyptian fruit bats. Both people became ill upon return to their home country; one in the Netherlands and one in the US.
In October 2017, 3 fatal cases of MVD were reported in eastern Uganda, near the Kenyan border.
While reports of MVD outbreaks in West Africa are rare, sporadic cases have been identified, including 1 fatal case reported from Guinea in August 2021, and 2 fatal cases reported from Ghana in July 2022.
See Ebola and Marburg haemorrhagic fevers: outbreaks and case locations.
Recorded outbreaks to May 2023
Year(s) | Country | Apparent or suspected origin | Reported number of cases* | Reported number of deaths (%)* | Outbreak setting |
---|---|---|---|---|---|
1967 | Germany and Serbia | Uganda | 31 | 7 (22.6%) | Simultaneous outbreaks occurred in laboratory workers who had handled imported African green monkeys. |
1975 | South Africa | Zimbabwe | 3 | 1 (33.3%) | A young man who had recently travelled through Zimbabwe was admitted to hospital in Johannesburg and later died. Infection transmitted to his travelling companion and a nurse, both of whom recovered. |
1980 | Kenya | Kitum cave (Kenya) | 2 | 1 (50%) | A male patient with a recent travel history including a visit to Kitum Cave in Kenya’s Mount Elgon National Park. The doctor who attempted resuscitation became infected but recovered. |
1987 | Kenya | Kitum cave (Kenya) | 1 | 1 (100%) | A fatal case occurred in a 15 year old Danish boy who had been in Kenya for 1 month. He had visited Kitum Cave in Mouth Elgon National Park. |
1998 - 2000 | Democratic Republic of Congo (DRC) | Durba (DRC) | 154 | 128 (83.1%) | The first large outbreak of Marburg under natural conditions. Majority in young male workers at a mine in Durba, cases also detected in neighbouring village, and among family members. |
2004 - 2005 | Angola | Uige (Angola) | 374 | 329 (88%) | Largest outbreak on record. Cases reported in 5 provinces, the majority in Uige. Significant number of healthcare workers and family members affected. Cultural practices, civil unrest and weakened healthcare systems hampered control. |
2007 | Uganda | Kitaka mine (Uganda) | 4 | 2 (50%) | Mine workers in western Kamwenge province. |
2008 (Jan) | US (ex-Uganda) | Python cave (Uganda) | 1 | 0 (0%) | A tourist who had visited this cave in Uganda, renowned for its thousands of bats, became unwell after returning to the US. |
2008 (July) | Netherlands (ex-Uganda) | Python cave (Uganda) | 1 | 1 (100%) | A tourist who had visited the same cave in Uganda. |
2012 | Uganda | South-western Uganda | 15 | 4 (26.7%) | 4 districts (Kabale, Ibanda, Mbarara, and Kampala) |
2014 | Uganda | Kampala (Uganda) | 1 | 1 (100%) | A health professional |
2017 | Uganda | Kween district (Uganda) | 3 | 3 (100%) | Three members of one family |
2021 | Guinea | Guinea (bat reservoir or contaminated fruits) | 1 | 1 (100%) | Male case in Guéckédou prefecture, N’zérékoré region, south-western Guinea. |
2022 | Ghana | Under investigation | 3 | 2 (66.7%) | Three cases (a family cluster) from Ashanti Region in Southern Ghana. |
2023 | Equatorial Guinea | Under investigation | 40 | 35 (87.5%) | Centro Sur, Kié Ntem, Litoral and Wele-Nzas provinces |
2023 | Tanzania | Under investigation | 9 | 6 (66.7%) | Kagera Region in the north-west of the country |
TOTAL | - | - | 643 | 522 (81.2%) | - |
*Confirmed and probable MVD cases are included.
Symptoms
The incubation period of MVD is typically 3 to 10 days, with rare reports of longer incubation periods up to 4 weeks (although the precise mechanism of transmission in these cases was not well documented).
The onset of illness is sudden, with:
- severe headache
- malaise
- high fever
- progressive and rapid debilitation
By about the third day symptoms include:
- watery diarrhoea
- abdominal pain
- cramping
- nausea
- vomiting
Symptoms become increasingly severe, and many patients develop severe haemorrhagic fever after 5 to 7 days.
Severe cases usually exhibit some form of bleeding, often from multiple sites.
Many of the early symptoms of MVD are similar to those of other infectious diseases, such as malaria or typhoid. Confirmation of the disease requires laboratory testing.
Transmission
Evidence gathered to date suggests that natural infection is most likely associated with contact with Rousettus bat colonies.
Subsequent transmission of virus from person to person requires close contact with an infected patient. Blood or other bodily fluids (faeces, vomit, urine, saliva and respiratory secretions) contains a high concentration of virus, particularly when these fluids contain blood.
Contact with blood or other bodily fluids transmits the virus.
Sexual transmission of the virus can occur, and the virus may remain in semen for up to 7 weeks after clinical recovery.
Transmission of the virus via contaminated injection equipment or needle-stick injuries is associated with more severe disease.
Close contact with the body or body fluids of people who have died of MVD during preparation for burial is a recognised source of infection.
Diagnosis
In the UK, the UK Health Security Agency’s Rare and Imported Pathogens Laboratory (RIPL) has specialised laboratory facilities to provide a definitive diagnosis of MVD.
See VHF sample testing advice.
Treatment
There is no specific treatment available for MVD. Patients receive supportive therapy, including:
- balancing fluids and electrolytes
- maintaining oxygen status and blood pressure
- replacing lost blood and clotting factors
UK guidelines
The UK has specialist guidance on the management (including infection control) of patients with viral haemorrhagic fevers including MVD.
It provides advice on how to comprehensively assess, rapidly diagnose and safely manage patients suspected of being infected, within the NHS, to ensure the protection of public health.
Prevention and control
There is currently no vaccine for MVD.
Measures for prevention of secondary transmission of Marburg virus are similar to those used for other haemorrhagic fever viruses, and focus on avoiding contact with infected bodily fluids.
See ACDP algorithm and guidance on management of patients.
To avoid person to person transmission of Marburg virus, healthcare workers must take great care when nursing patients, to avoid contact with infected bodily fluids.
Patients should be isolated, and healthcare workers must use strict barrier nursing techniques including wearing masks, gloves and gowns.
Invasive procedures are a particular risk and infection control is essential for:
- placing of intravenous lines
- handling blood and secretions
- inserting catheters
- using suction devices
Other infection control measures include proper use, disinfection, and disposal of instruments and equipment used in caring for patients.
Updates to this page
Last updated 13 June 2023 + show all updates
-
Updated to reflect the end of 2 MVD outbreaks.
-
Update to reflect Marburg virus disease outbreak in Tanzania.
-
Update to reflect Marburg virus disease outbreak in Equatorial Guinea.
-
Updated epidemiological information relating to a Marburg virus outbreak.
-
Updated with latest MVD information.
-
Updated text to reflect 2021 case of MVD in Guinea.
-
Updated as the Marburg outbreak in Uganda was declared over.
-
Added new outbreak in Uganda.
-
First published.