Using multilevel models for assessing the variability of multinational resource use and cost data.

Abstract

Multinational economic evaluations often calculate a single measure of cost-effectiveness using cost data pooled across several countries. To assess the validity of pooling international cost data the reasons for cost variation across countries need to be assessed. Previously, ordinary least squares (OLS) regression models have been used to identify factors associated with variability in resource use and total costs. However, multilevel models (MLMs), which accommodate the hierarchical structure of the data, may be more appropriate. This paper compares these different techniques using a multinational dataset comprising case-mix, resource use and cost data on 1300 stroke admissions from 13 centres in 11 European countries. OLS and MLMs were used to estimate the effect of patient and centre-level covariates on the total length of hospital stay (LOS) and total cost. MLMs with normal and gamma distributions for the data within centres were compared.

Citation

Health Economics, 14 (2), 185-196 pp. [DOI: 10.1002/hec.916]

Using multilevel models for assessing the variability of multinational resource use and cost data.

Help us improve GOV.UK

Don’t include personal or financial information like your National Insurance number or credit card details.