Spatial and temporal analysis of non-steady elongation of rice leaves


A precise knowledge of the temporal and spatial distributions of cell division and tissue expansion is essential for appropriate leaf sampling in omics studies and for analyses of plant–environment relations. Elongating leaves of rice were studied during their whole development for elongation rate, distribution of cell length, cell production rate and spatial distribution of growth in the leaf. In seven genotypes, the pattern of leaf elongation rate followed three phases: (1) an exponential increase before leaf appearance; (2) a short phase (2–4 d at 20 °C) with a stable leaf elongation rate around leaf appearance; and (3) a phase of 8–10 d with a progressive decrease in elongation rate. The profile of cell length along the leaf changed with time during the first and last phases, but was time invariant around appearance. We propose a method adapted to non-steady elongation based on anatomical measurements, which was successfully tested by comparing it with the pricking method. It allowed analysis of the change with time in the spatial distribution of growth from initiation to end of leaf growth. The length of leaf zones with cell division and tissue elongation varied with time, with maximums of 21 and 60 mm respectively around leaf appearance.


Plant, Cell and Environment (2009) 32 (11) 1561-1572 [doi: 10.1111/j.1365-3040.2009.02020.x]

Spatial and temporal analysis of non-steady elongation of rice leaves

Help us improve GOV.UK

Don’t include personal or financial information like your National Insurance number or credit card details.