Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation

Abstract

3-Nitro-1H-1,2,4-triazole- and 2-nitro-1H-imidazole-based amides with an aryloxy-phenyl core were synthesized and evaluated as antitrypanosomal agents. All 3-nitrotriazole-based derivatives were extremely potent anti-Trypanosoma cruzi agents at sub nM concentrations and exhibited a high degree of selectivity for the parasite. The 2-nitroimidazole analogs were only moderately active against T. cruzi amastigotes and exhibited low selectivity. Both types of compound were active against Leishmania donovani axenic amastigotes with excellent selectivity for the parasite, whereas three 2-nitroimidazole-based analogs were also moderately active against infected macrophages. However, no compound demonstrated selective activity against Trypanosoma brucei rhodesiense. The most potent in vitro anti-T. cruzi compounds were tested in an acute murine model and reduced the parasites to an undetectable level after five days of treatment at 13 mg/kg/day. Such compounds are potential inhibitors of T. cruzi CYP51 and, being excellent substrates for the type I nitroreductase (NTR) which is specific to trypanosomatids, work as prodrugs and constitute a new generation of effective and more affordable antitrypanosomal agents.

Citation

Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J.R. Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorganic and Medicinal Chemistry (2015) 23 (19) 6467-6476. [DOI: 10.1016/j.bmc.2015.08.014]

Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation

Published 1 January 2015