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1.       Introduction 
 
C1.     Characterisation of the carcinogenic potential of the vast number of 
untested chemicals present in the human environment using conventional in vivo 
bioassays is not feasible and alternative methods are required. New approaches 
that are being developed include omics technologies and high-throughput 
screening (HTS) assays. The goal of these approaches is to develop predictive 
methods that are rapid, cheaper than current bioassays, and/or high throughput, 
based on human-relevant mechanisms of carcinogenesis.  
 
2.       Omics technologies 
 

C2.     The collective term ‘omics’ refers to the genomic (DNA sequence analysis) 

and post-genomic (e.g. transcriptomics, proteomics, metabolomics, epigenomics) 

technologies that are used for the characterisation and quantitation of pools of 

biological molecules (e.g. mRNAs, proteins, metabolites), and the exploration of 

their roles, relationships and actions within an organism (Ward & Daston, 2014). 

The term ‘toxicogenomics’ is sometimes used to describe the application of omics 

technologies to the study of adverse effects of toxicants or environmental 

stressors (Waters, 2016). The Committee will use the term ‘omics’ out of 

preference as it avoids the suggestion of being focussed on genomic techniques.  

 

C3.   Chemicals producing similar types and levels of toxicity are expected to 

share similar gene, protein or metabolite expression profiles, and such patterns of 

toxicant-induced molecular changes (‘fingerprints’ or ‘signatures’, sometimes 

referred to as biomarkers) can be used to assess toxicity. Omics methods may 

identify changes at much earlier time points than adverse effects observed at the 

tissue, organ or whole-organism level, and the post-genomic technologies can be 

used to follow toxicant-induced changes dynamically. Omics methods produce 

large amounts of biological information that can be integrated and analysed using 

bioinformatics tools. 
 
C4.     The aim of predictive omics in carcinogenicity evaluation is to create high-

resolution profiles of biological responses, to map causal events, processes and 

pathways that occur as a function of dose and time, reflecting carcinogenic modes 

of action (Waters, 2016). Omics methods are not yet suitable as high-throughput 

screening tests, but have shown great utility in determining mechanisms of action 

of chemical carcinogens, and as a prioritising and/or predictive tool for carcinogen 

identification. They are being developed to evaluate the effects of exposures to 

genotoxic and non-genotoxic carcinogens, in vivo and in vitro. Studies in vivo have 

been used mostly to identify mechanisms of carcinogenicity in rodents (e.g. 

Guyton et al., 2009; Fielden et al., 2011; Uehara et al., 2011) and for the 

classification and prioritisation of compounds for further evaluation (e.g. Ellinger-

Ziegelbauer et al. 2008; Thomas et al., 2009; Watanabe et al., 2012; Yamada et 

al. 2012; Melis et al., 2014). 
 

C5.     Several groups have reported studies to predict the outcomes of 2-year 

rodent bioassays by applying omics methods to short-term (from single to 90-day 
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exposures) studies in vivo. The majority of these studies have focussed on mRNA 

profiling in rat liver, but proteomics, microRNA profiling, and metabolomics 

methods have also been employed (e.g. Yamanaka et al., 2007; Waterman et al., 

2010; Koufaris et al., 2012; Ament et al., 2013). Gene signatures have been 

identified to discriminate between direct- and indirect-acting genotoxic 

carcinogens, non-genotoxic carcinogens and non-carcinogens (reviewed by 

Waters et al., 2010; Auerbach, 2016). The identification of non-genotoxic 

carcinogens using omics biomarkers is complex due to the large variety of modes 

of action involved, many of which are tissue-specific. Some modes of non-

genotoxic carcinogenicity, for example oxidative stress, may show very early 

signature gene expression changes after a single exposure and repeat-dose 

studies can then be useful to determine ‘false positives’. Auerbach et al. (2010) 

reported that signatures for non-genotoxic hepatocarcinogenicity in rats were more 

predictive from 90-day than from shorter-term studies. From this, the authors 

proposed the concept of a ‘shared cancer biology’, whereby a common pre-

cancerous biology may be identified by common gene expression markers that are 

to some degree independent of the specific exposure. ‘Profiling to the phenotype’ 

takes as the starting point a transcriptional profiling of tissue samples 

corresponding to cancer pathologies identified in 2-year bioassays, ‘working 

backwards’ to use these profiles as markers for earlier prediction based on the 

shared pre-cancer biology concept. Such data could be cross-referenced to 

archived human tissue samples to improve human relevance (Waters, 2016). 
 
C6.   Gene expression studies in cultured cells exposed to toxicants have also 

focussed mainly on liver, using either primary hepatocytes or cell lines. These 

studies have shown utility in identifying genotoxic carcinogens, for which the 

importance of using p53-competent cell types is emphasised. In vitro studies have 

proven less useful for discriminating non-genotoxic carcinogens, in large part due 

to the wide diversity of modes of action involved. Indeed, the feasibility of using in 

vitro models for predicting the development of cancer in vivo has been questioned, 

for reasons including the following: the carcinogenicity of a chemical may require 

the presence of and interaction between different cell and tissue types in an 

organism, the biotransformation of parent compounds into metabolites, and 

correlation of effective doses in vitro with corresponding concentrations in 

different tissues in an organism (Waters, 2016). Nevertheless, methods are 

considered to be useful in characterising toxicity pathways to elucidate modes of 

action (Doktorova et al., 2012; Luijten et al., 2016). 
 

C7.   A ‘comparison approach’ to the identification of non-genotoxic carcinogens 

using in vitro omics-based studies has been described, whereby  a limited set of 

the most significantly up- and down-regulated genes is compared for overlap 

across different chemical exposures, to identify the best match for a chemical of 

interest. A test of this method to categorise chemicals by their mode of action using 

primary mouse hepatocytes or mouse embryonic stem cells indicated the 

requirement to use a combination of different in vitro systems, and these studies 

are being extended to incorporate tests over chemical concentration ranges 

(Schaap et al., 2015, 2016). 
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C8.     A large catalogue of (in vivo and in vitro) datasets is now available, based 

on a large set of compounds, consistent study designs and standardised 

experimental protocols. Databases contain dynamic gene expression data over 

multiple doses/concentrations plus companion data (e.g. compound 

pharmacology, toxicology, clinical chemistry and histopathology). This information 

can be used for ‘phenotypic anchoring' –  relating specific changes in gene-

expression profiles to adverse effects observed in conventional toxicity tests, to 

allow the identification of gene-expression changes that are causally related to the 

development of the toxicity phenotype (Paules, 2003). Studies should now be 

extended to include targeting of organs/cell populations other than liver, the 

abstraction from individual signature genes to higher-order levels, such as 

pathway enrichments and molecular interactions, and the integration of expression 

data obtained across multiple omics platforms (DNA, mRNA, miRNA, protein, 

metabolites) (Römer et al., 2014). 
 

C9.   It has been suggested that the ‘parallelogram approach’ could be useful to 

compare early key events and toxicity pathways indicated by omics studies 

performed using sets of chemicals with well-established apical endpoints, to 

evaluate the likelihood of a similar mode of action in humans. This method, initially 

proposed by Sobels (1977) and further developed by Sutter (1995), can be used in 

the assessment of risk to humans by extrapolating findings from two different in 

vitro model systems, one of which should be human (e.g. rodent in vitro and human 

in vitro) and from in vivo studies in the non-human species (e.g. rodent in vivo). The 

parallelogram approach has been applied to studies in hepatotoxicity, integrating 

phenotypic and omics data from rodent studies in vivo with data obtained using 

rodent and human hepatocytes in vitro. The ‘concordance model’ extends this 

approach to include data from several animal species plus several in vitro (human) 

assays, which should lead to a greater level of confidence in the biological 

significance of the common toxicity pathways identified (Kienhuis et al., 2016). 

These approaches may also be applicable to carcinogenicity evaluations. 
 
C10.   Progress is being made to integrate omics data into quantitative cancer risk 

assessments. Dose-response assessments are applied to derive points of 

departure (PoDs) for omics-derived endpoints, usually benchmark doses (BMDs; 

often the lowest BMD), which can be compared with PoDs from conventional/ 

apical endpoints. Case studies using transcriptomic biomarkers for several model 

compounds have been described, and the standardisation of study protocols as 

well as methods to derive BMD values have been discussed (reviewed by Thomas 

and Waters, 2016). A mode of action-based context is preferential in the 

application of transcriptomic dose-response in the derivation of the BMD. Dose-

response studies performed over time can relate BMD value changes with adverse 

responses to identify transcriptional changes that are progressive or resolve. Use 

of the ‘most-sensitive BMD’ derived from omics data may lead to an over-

conservative risk assessment as the most sensitive changes in gene expression/ 

pathway alterations may represent adaptive rather than toxicity endpoints. At 

present, this issue is addressed by phenotypic anchoring to traditional apical 

endpoints, with the intention that there will eventually be sufficient well-validated 

data that apical endpoints in vivo will no longer be required. The parallelogram 
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approach and concordance model can be integrated to select pathways of human 

biological significance (Kienhuis et al., 2016). 

 

C11.   Thomas et al. (2013) outlined a framework for applying transcriptomic data 
to (non-cancer and cancer) risk assessment. The proposed weight of evidence 
analysis incorporates estimation of genotoxic potential and an extrapolation factor 
based on the PoD estimated from the lowest BMD determined from transcriptomic 
dose-response studies in eight specified tissues at a single time point between five 
days and thirteen weeks in rats and mice. The assumption is that basing the PoD 
on the most sensitive pathway is generally protective until key adverse effect 
pathways are identified. This approach might be applicable to obtaining margins of 
exposure when cancer data are not available, but advice on relative risk is 
required. Thomas and Waters (2016) commented that although there may be 
issues of concern in using such an approach, pragmatically, a PoD based on such 
information may be preferable to no PoD, which is currently the case for the vast 
majority of chemicals. 
 
3.       High-throughput screening 
 
C12.   Individual omics-based assays can provide information about multiple 

changes (e.g. expression levels of large numbers of genes) in response to a 

chemical exposure, but they currently have limited applicability for use in high-

throughput screening (HTS). Conversely, HTS methods, which evaluate only one 

or a small number of genes or processes per assay, are adapted to screen large 

numbers of chemicals over a wide range of assay conditions. They have the 

advantage of providing rapid, high-throughput, standardised testing of chemicals. 

A number of these methods were initially developed in the pharmaceutical industry 

for the rapid screening of libraries of candidate drugs or small molecules for 

specific types of biological activity or disease processes (Pereira and Williams, 

2007) and are now being applied robotically to study chemical perturbations of 

biological pathways in relation to toxicity. 
 
C13.   HTS assays comprise two general categories. Biochemical (cell-free) 

assays are usually homogenous reactions that measure effects on specific 

molecular targets and can be easily miniaturised. Cell-based assays can 

determine perturbations at different points in cellular pathways and are often run in 

multiwell formats (from Waters, 2016). 
 

C14.   HTS approaches are being developed with the aim to predict 

carcinogenicity in vivo. A wide range of doses can be tested in each individual 

assay allowing the description of dose-response curves at low (human-relevant) 

doses, which can be useful for comparison with low-dose omics and in vivo study 

data. HTS is of particular value for hazard identification and prioritisation for further 

testing, and can be run in parallel with structure-activity relationships (SARs) to 

predict potential targets prior to screening. A major challenge is how to incorporate 

the toxicokinetic and toxicodynamic parameters of in vivo studies, and some 

authors have questioned whether in vitro methods can actually be useful in risk 

assessment to support regulatory decision-making (see paragraph C6). 

 



 This is a draft statement for discussion. It does not necessarily represent the views of the Committee. 
 

C15.   The landmark report, ‘Toxicity Testing in the 21st
 

Century: A Vision and a 

Strategy’ proposed a paradigm shift in toxicity testing from high-dose studies in 

vivo to an approach based on in vitro assays using human-relevant cells or tissues 

using a mode of action approach based on the evaluation of dynamic pathways 

underlying biological response (National Research Council, 2007; Bhattacharya et 

al., 2011). This concept has been generally labelled ‘TT21C’. The aim stated is to 

test whether chemical compounds have the potential to disrupt processes in the 

human body that may lead to negative health effects. The two central aspects of 

the TT21C approach are the evaluation of innate cellular pathways that may be 

perturbed by chemicals and the determination of chemical concentration ranges in 

which these perturbations are likely to lead to adverse health effects. The TT21C 

approach is being evaluated in proof-of-concept studies using well-studied 

prototype compounds whose toxicity has already been examined with in vivo and 

in vitro assays. 

 

C16.   To date, the major initiatives applying the TT21C approach have been 

based in the US, in projects such as Tox21 and ToxCast. There are also various 

European projects moving to a toxicity pathway approach linked in with a 

reduction, replacement and refinement in the use of animals in toxicity testing. The 

AXLR8 consortium includes details of other EU funded research investigating 

these (http://axlr8.eu/, accessed 10/10/16). 

 

C17.   Tox21 (Toxicology in the 21st Century, https://www.epa.gov/chemical- 

research/toxicology-testing-21st-century-tox21, accessed 17/10/16)) is a 

collaboration in the US between partners at the National Institutes of Health (NIH), 

Environmental Protection Agency (EPA) and Food and Drug Administration (FDA) 

that began in 2008 in response to TT21C. The stated goals are to identify 

environmental chemicals that lead to biological responses and determine their 

mechanisms of action on biological systems, prioritize specific compounds for 

more extensive toxicological evaluation, develop models that predict chemicals’ 

negative health effects in humans, and annotate all human biochemical pathways 

and design assays (tests) that can measure these pathways’ responses to 

chemicals. Tox21 utilises quantitative HTS in vitro assays and computational 

toxicology approaches to cover a range of cell responses and signalling pathways 

to rank and prioritise chemicals. The HTS assays target multiple genes, proteins, 

pathways and cancer-related processes. To date, over 10,000 chemicals have 

been screened in approximately 50 assays. 
 

C18.   The EPA ToxCast (Toxicity Forecaster) project is related to, but separate 
from, Tox21. The results from ToxCast form a contribution to Tox21. ToxCast uses 
a similar approach to Tox21, but includes a much wider range of assays and 
endpoints. To date, more than 1800 chemicals, including industrial and consumer 
products and food additives have been screened in the ToxCast program for over 
700 endpoints. All of the resulting information is publicly available on a database, 
together with tools for visualising and analysing the data 
(https://www.epa.gov/chemical-research/toxicity-forecasting, accessed 29/09/16).  

 
 

http://axlr8.eu/
https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21
https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21
https://www.epa.gov/chemical-research/toxicity-forecasting
https://www.epa.gov/chemical-research/toxicity-forecasting
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C19.   In ToxCast Phase I, a set of around 300 chemicals with pre-existing 
toxicity data were run through >600 HTS assays. ToxCast HTS data relating to 
perturbation of carcinogenesis-related pathways were then used to develop a 
model for classifying carcinogens (mostly non-genotoxic) based on 2-year data in 
the EPA Toxicity Reference Database (ToxRefDB), comprising largely pesticides. 
This dataset was applied to an external test set of 33 pesticides. The model 
showed some (limited) capability to discriminate between possible/probable and 
negative/unlikely carcinogens, but several known carcinogens were identified as 
false negatives (Kleinstreuer et al., 2013). Further, independent analyses using 
this data set have found that assay design and coverage are not yet adequate and 
need development to improve the accuracy of prediction of rodent carcinogenicity 
and of the relevance of predictions to humans (Benigni, 2013; Cox et al., 2016). 
Problems faced in developing and improving the ToxCast assays are discussed in 
the review article by Benigni (2014), who concluded that the next phase should 
focus on including exogenous metabolic activation in the HTS assay systems and 
developing a set of well-characterised, standard carcinogens. 
 
4.       COC conclusions 
 

C20.   Use of the 2-year rodent bioassay to evaluate the carcinogenicity of the vast 

numbers of untested chemicals that are currently marketed is not feasible and 

alternative methods are required for this purpose. Newer approaches are being 

developed, such as omics technologies and high-throughput screening (HTS) 

assays. The goal of these approaches is to develop predictive methods that are 

rapid, cheaper than current bioassays, and/or high throughput, based on human-

relevant mechanisms of carcinogenesis.  

 

C21.   Omics technologies may be useful as a part of new strategies based on 

human-relevant modes of action. To date, most studies have used transcriptomic 

methods, but newer approaches such as metabolomics show promise for the 

future. Omics approaches may be used to extrapolate between animal in vivo and 

in vitro experiments and human in vitro experiments to predict likely outcomes for 

humans in vivo. This requires the development of biomarkers, and while a lot of 

information has been generated in this area, a better understanding of the key 

markers is required before this can progress. 

 

C22.   High-throughput screening (HTS) technologies using biochemical or cell- 

based assays that allow rapid screening of large numbers of chemicals over a 

wide range of concentrations may be useful for hazard identification and 

prioritisation, but are currently not useful for risk assessment. 

 

C23.   These emerging technologies are not yet sufficiently developed or validated 

to be used in the formal assessment of carcinogenic risk to humans from 

chemicals in the environment. However, the Committee is aware of these 

developments and will keep progress in this area under review.  
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