Acknowledgments

UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations-steering-committee).

The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content.

For further information please contact us at:

Standards Unit
Microbiology Services
Public Health England
61 Colindale Avenue
London NW9 5EQ
E-mail: standards@phe.gov.uk

Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories

PHE Publications gateway number: 2015013

UK Standards for Microbiology Investigations are produced in association with:
Amendment table

Each SMI method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@phe.gov.uk.

New or revised documents should be controlled within the laboratory in accordance with the local quality management system.

<table>
<thead>
<tr>
<th>Amendment No/Date.</th>
<th>10/08.03.17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue no. discarded.</td>
<td>6</td>
</tr>
<tr>
<td>Insert Issue no.</td>
<td>6.1</td>
</tr>
<tr>
<td>Section(s) involved</td>
<td>Amendment</td>
</tr>
<tr>
<td>4.5.1 Culture media, conditions and organisms.</td>
<td>Enrichment broth has been added to the table.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amendment No/Date.</th>
<th>9/15.06.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue no. discarded.</td>
<td>5.2</td>
</tr>
<tr>
<td>Insert Issue no.</td>
<td>6</td>
</tr>
<tr>
<td>Section(s) involved</td>
<td>Amendment</td>
</tr>
<tr>
<td>Whole document.</td>
<td>Hyperlinks changed to gov.uk.</td>
</tr>
<tr>
<td>Page 2.</td>
<td>Updated logos added.</td>
</tr>
<tr>
<td>Title.</td>
<td>Title amended.</td>
</tr>
<tr>
<td>Introduction.</td>
<td>Reviewed and streamlined.</td>
</tr>
<tr>
<td>3.1 Optimal transport and storage conditions.</td>
<td>Parameters set for each stage.</td>
</tr>
<tr>
<td>4.4 Microscopy.</td>
<td>Total white cell count section amended to now include the use of blood cell analysers.</td>
</tr>
<tr>
<td>4.5 Culture and investigation.</td>
<td>Use of blood culture bottles now a recognised method.</td>
</tr>
<tr>
<td>References.</td>
<td>References reviewed and updated.</td>
</tr>
</tbody>
</table>
UK SMI#: scope and purpose

Users of SMIs
Primarily, SMIs are intended as a general resource for practising professionals operating in the field of laboratory medicine and infection specialties in the UK. SMIs also provide clinicians with information about the available test repertoire and the standard of laboratory services they should expect for the investigation of infection in their patients, as well as providing information that aids the electronic ordering of appropriate tests. The documents also provide commissioners of healthcare services with the appropriateness and standard of microbiology investigations they should be seeking as part of the clinical and public health care package for their population.

Background to SMIs
SMIs comprise a collection of recommended algorithms and procedures covering all stages of the investigative process in microbiology from the pre-analytical (clinical syndrome) stage to the analytical (laboratory testing) and post analytical (result interpretation and reporting) stages. Syndromic algorithms are supported by more detailed documents containing advice on the investigation of specific diseases and infections. Guidance notes cover the clinical background, differential diagnosis, and appropriate investigation of particular clinical conditions. Quality guidance notes describe laboratory processes which underpin quality, for example assay validation.

Standardisation of the diagnostic process through the application of SMIs helps to assure the equivalence of investigation strategies in different laboratories across the UK and is essential for public health surveillance, research and development activities.

Equal partnership working
SMIs are developed in equal partnership with PHE, NHS, Royal College of Pathologists and professional societies. The list of participating societies may be found at https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. Inclusion of a logo in an SMI indicates participation of the society in equal partnership and support for the objectives and process of preparing SMIs. Nominees of professional societies are members of the Steering Committee and Working Groups which develop SMIs. The views of nominees cannot be rigorously representative of the members of their nominating organisations nor the corporate views of their organisations. Nominees act as a conduit for two way reporting and dialogue. Representative views are sought through the consultation process. SMIs are developed, reviewed and updated through a wide consultation process.

Quality assurance
NICE has accredited the process used by the SMI Working Groups to produce SMIs. The accreditation is applicable to all guidance produced since October 2009. The process for the development of SMIs is certified to ISO 9001:2008. SMIs represent a good standard of practice to which all clinical and public health microbiology

Microbiology is used as a generic term to include the two GMC-recognised specialties of Medical Microbiology (which includes Bacteriology, Mycology and Parasitology) and Medical Virology.
laboratories in the UK are expected to work. SMIs are NICE accredited and represent neither minimum standards of practice nor the highest level of complex laboratory investigation possible. In using SMIs, laboratories should take account of local requirements and undertake additional investigations where appropriate. SMIs help laboratories to meet accreditation requirements by promoting high quality practices which are auditable. SMIs also provide a reference point for method development. The performance of SMIs depends on competent staff and appropriate quality reagents and equipment. Laboratories should ensure that all commercial and in-house tests have been validated and shown to be fit for purpose. Laboratories should participate in external quality assessment schemes and undertake relevant internal quality control procedures.

Patient and public involvement

The SMI Working Groups are committed to patient and public involvement in the development of SMIs. By involving the public, health professionals, scientists and voluntary organisations the resulting SMI will be robust and meet the needs of the user. An opportunity is given to members of the public to contribute to consultations through our open access website.

Information governance and equality

PHE is a Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions. The development of SMIs are subject to PHE Equality objectives https://www.gov.uk/government/organisations/public-health-england/about/equality-and-diversity.

The SMI Working Groups are committed to achieving the equality objectives by effective consultation with members of the public, partners, stakeholders and specialist interest groups.

Legal statement

Whilst every care has been taken in the preparation of SMIs, PHE and any supporting organisation, shall, to the greatest extent possible under any applicable law, exclude liability for all losses, costs, claims, damages or expenses arising out of or connected with the use of an SMI or any information contained therein. If alterations are made to an SMI, it must be made clear where and by whom such changes have been made.

The evidence base and microbial taxonomy for the SMI is as complete as possible at the time of issue. Any omissions and new material will be considered at the next review. These standards can only be superseded by revisions of the standard, legislative action, or by NICE accredited guidance.

SMIs are Crown copyright which should be acknowledged where appropriate.

Suggested citation for this document

Scope of document

Type of specimen
Amniotic fluid, pericardial fluid, peritoneal fluid (ascites), pleural fluid, synovial (joint) fluid, bursa fluid
Blood, cerebrospinal fluid, continuous ambulatory peritoneal dialysis (CAPD) fluid, Pouch of Douglas fluid, bile and urine are dealt with in the following respectively:

- B 37 – Investigation of blood cultures (for organisms other than Mycobacterium species)
- B 27 – Investigation of cerebrospinal fluid
- B 25 – Investigation of continuous ambulatory peritoneal dialysis fluid
- B 28 – Investigation of genital tract specimens
- B 15 – Investigation of bile and
- B 41 – Investigation of urine

Scope

This SMI describes the examination of fluids for the detection and recovery of the causative organisms of infections of normally sterile sites (other than those listed above).
This SMI should be used in conjunction with other SMIs.

Introduction

The detection of organisms in fluids that are normally sterile indicates significant infection, which can be life-threatening.

Blood cultures may also be positive with the same infecting organism, and occasionally may be positive when culture of the fluid fails to reveal the organism. It is also possible to use blood culture bottles for the culture of sterile fluids.

Amnionitis

Amnionitis means inflammation of the amnion, the innermost of the two membranes that form the fetal sac, enclosing the fetus and the amniotic fluid. In cases of prolonged rupture of the membranes, the amniotic fluid may become contaminated with vaginal flora. If amnionitis is confirmed during labour, infants are delivered immediately depending on fetus age due to the risk of infection to the mother and the foetus. Amnionitis may also result from instrumentation during antenatal medical procedures.

Cultures of fluid taken perinatally are often mixed and include streptococci, anaerobes, Enterobacteriaceae, “Streptococcus anginosus” group, Listeria monocytogenes and Mycoplasma hominis. Other organisms that have been implicated in amniotic infections include enterococci, Haemophilus species, Candida species, aerobic Gram
positive bacilli, pseudomonads and staphylococci. Proteomics may offer the best diagnostic option for this condition in the future.\\n
Pericarditis

Inflammation of the pericardium, the membrane enveloping the heart, is known as pericarditis. This results in an increase in the volume of fluid in this sac. However, most pericardial effusions are small in volume and are sterile.

Infectious pericarditis can be separated into three groups:

1. purulent, which are caused by bacteria and is fatal if untreated. It has a 40% mortality in patients who are treated. A wide range of bacteria have been isolated from cases of purulent pericarditis
2. benign, either due to viruses or post pericardiotomy syndrome
3. hypersensitivity or post-infectious

In AIDS pericarditis, the incidence of bacterial infection is much higher than in the general population, with a higher rate of Mycobacterium species infections.\\n
Peritonitis

Peritonitis is inflammation of the peritoneum, the serous membrane lining the abdominal cavity and covering the abdominal viscera. Primary bacterial peritonitis accounts for <1% of bacterial peritonitis and occurs spontaneously without evidence of intra-abdominal organ perforation. It is most frequently seen in children and particularly those with nephrotic syndrome.

Spontaneous bacterial peritonitis (SBP) is the infection of pre-existing ascites in the absence of known intra-abdominal infection, and is a frequent, serious complication of cirrhosis and other liver disease. Infection is almost always mono-microbial, usually resulting from haematogenous spread. Lactoferrin levels can prove a useful way to identify this infection.

Secondary bacterial peritonitis usually arises following gastrointestinal leakage within the peritoneal cavity. This leakage may follow perforation of diseased viscera or abdominal trauma. The commonest cause in western countries is acute appendicitis. Other causes include perforated peptic ulcer, diverticular disease of the colon, pancreatitis and cholecystitis and as a complication of CAPD (see B 25 – Investigation of continuous ambulatory peritoneal dialysis fluid).

Localised peritonitis develops over any inflamed area of the gastrointestinal tract. It is a milder condition that may resolve, but may leave residual adhesions.

Acute generalised peritonitis is an extremely serious and often fatal condition. It usually arises as a consequence of leakage of gastrointestinal tract contents from a perforated ulcer or from a ruptured gangrenous appendix. The large quantity of bacterial toxins absorbed often leads to the development of paralytic ileus, toxaemia and septic shock.

Chronic peritonitis may develop as a result of abscess formation and persist for weeks or months unless drained. Persistent abscesses can cause general ill health and may become surrounded by dense fibrous tissue which interferes with the function of the intestinal loops. Chronic infection may also be caused by M. tuberculosis.
Pleurisy

Pleurisy is inflammation of the pleura, the serous membranes that cover the lungs and the inner aspect of the thoracic cavity.

Pleural effusion

Pleural effusion is the accumulation of fluid between the inner and outer (visceral and parietal) layers of the pleura. It may arise as the result of pneumonia, chronic heart failure or uraemia (when cultures will be negative in the latter two), or by direct spread of infection, such as a primary tuberculous focus rupturing into the pleural cavity. Carcinomatous involvement of the visceral pleura is one of the more common causes of sterile pleural effusions.

Effusion occurs early in the course of pneumonia representing the pleural response to an inflammatory reaction in the adjacent lung. Bacteria reach the pleural space by various routes: spreading from an adjacent area of pneumonia, thoracic surgery or drainage, bacteraemia, chest trauma or by trans-diaphragmatic spread from intra-abdominal infection.

Tuberculous pleural effusion usually arises as an extension of infection from a subpleural focus. Only small numbers of bacilli are found in the effusion, and as a result microscopy is rarely positive. Therefore other confirmatory tests are preferred eg sputum examination, skin tests or chest radiography.

Empyema

Empyema thoracis is collection of pus in the pleural cavity. It most often occurs as a complication of bacterial infection of the pulmonary parenchyma, either pneumonia or lung abscess.

Whereas the most common cause is *S. pneumoniae*, any organism can be isolated from pleural fluid, in particular organisms associated with lower respiratory tract infection and organisms acquired by aspiration of the oropharyngeal flora, including oral streptococci and anaerobes.

Organisms particularly associated with empyema in patients with acquired immune deficiency syndrome (AIDS) include: *Cryptococcus neoformans*, *Mycobacterium avium-intracellulare*, *M. tuberculosis* and *Nocardia asteroides*.

Other organisms which may cause infection in this group of patients include *Pneumocystis jirovecii* and *Rhodococcus equi*.

Septic arthritis

Septic arthritis is a pyogenic infection of a joint. Infection occurs via haematogenous spread or directly from contiguous lesions. Signs of infection may be difficult to detect clinically in patients whose joints are already inflamed due to rheumatological conditions. Patients with longstanding rheumatoid arthritis and osteoarthritis are predisposed to septic arthritis. Other predisposing factors include a history of trauma or intra-articular injection, immunosuppression, diabetes mellitus and malignancy. The aetiology of sepsis in prosthetic joints differs from that of non-prosthetic joints.

Infected synovial fluid is usually turbid or purulent with >75% of cells being polymorphonuclear leucocytes, although this is not specific for septic arthritis.

Any organism may be isolated from joint fluid, the most frequent isolates being: *Staphylococcus aureus*, streptococci, Enterobacteriaceae, *M. tuberculosis*, *Neisseria*...
gonorrhoeae. S. pneumoniae and Kingella kingae are common isolates from children16. As a result of immunisation, infection with Haemophilus influenzae type b is now less common.

Purulent arthritis and synovitis may also be caused by sodium urate crystals (gout) and calcium pyrophosphate crystals (pseudo-gout). If required, microscopic examination of synovial fluid can be performed under polarised light.

Bursitis17

Bursitis is the inflammation of a bursa; a small, fluid-filled sac of fibrous tissue lined with synovial membrane formed around joints and places where ligaments and tendons pass over bones. It is often accompanied with prominent overlying cellulitis. The olecranon and prepatellar bursae are the most commonly affected sites. They are often subject to repeated trauma. Skin wounds are the most likely portals of entry of infection and S. aureus is the most common isolate.

Technical information/limitations

Limitations of UK SMIs

The recommendations made in UK SMIs are based on evidence (eg sensitivity and specificity) where available, expert opinion and pragmatism, with consideration also being given to available resources. Laboratories should take account of local requirements and undertake additional investigations where appropriate. Prior to use, laboratories should ensure that all commercial and in-house tests have been validated and are fit for purpose.

Selective media in screening procedures

Selective media which does not support the growth of all circulating strains of organisms may be recommended based on the evidence available. A balance therefore must be sought between available evidence, and available resources required if more than one media plate is used.

Specimen containers18,19

SMIs use the term “CE marked leak proof container” to describe containers bearing the CE marking used for the collection and transport of clinical specimens. The requirements for specimen containers are given in the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) which states: “The design must allow easy handling and, where necessary, reduce as far as possible contamination of, and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes”.

1 Safety considerations

1.1 Specimen collection, transport and storage
Use aseptic technique.
Collect specimens in appropriate CE marked leak proof containers and transport in sealed plastic bags.
Compliance with postal, transport and storage regulations is essential.

1.2 Specimen processing
Containment Level 2.
Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.
Where Hazard Group 3 organisms eg *Mycobacterium tuberculosis* are suspected, all specimens must be processed in a microbiological safety cabinet under full containment level 3 conditions.
All specimens from the pleural cavity must be centrifuged in sealed buckets and processed in a microbiological safety cabinet under full containment level 3 conditions, whether or not examination for *Mycobacterium* species is requested.
Centrifugation must be carried out in sealed buckets which are subsequently opened in a microbiological safety cabinet.
If blood culture bottles are employed to provide an enrichment broth then any consequential use and subsequent disposal of syringes and needles must comply with local safety protocols.
Specimen containers must also be placed in a suitable holder.
Refer to current guidance on the safe handling of all organisms documented in this SMI.
The above guidance should be supplemented with local COSHH and risk assessments.

2 Specimen collection

2.1 Type of specimens
Amniotic fluid, bursa fluid, pericardial fluid, synovial (joint) fluid, peritoneal fluid (ascites), pleural fluid

2.2 Optimal time and method of collection
For safety considerations refer to Section 1.1.
Collect specimens before antimicrobial therapy where possible.
Samples of fluid rather than swabs of the fluids are the preferred specimen type to facilitate comprehensive investigation.
Collect specimens other than swabs into appropriate CE marked leak proof containers and place in sealed plastic bags.
2.3 Adequate quantity and appropriate number of specimens

Ideally, a minimum volume of 1mL.

Large volume specimens such as peritoneal fluid and ascitic fluid may contain very low numbers of organisms which require concentration in order to increase the likelihood of successful culture.

Small volume fluids such as synovial fluids may be received in insufficient volumes. This may impede the recovery of organisms.

The number and frequency of specimens collected depend on the clinical condition of the patient.

3 Specimen transport and storage

3.1 Optimal transport and storage conditions

For safety considerations refer to Section 1.1.

Specimens should be transported and processed as soon as possible.

If acute infection is suspected and the result may affect medical management, receive and process the sample within 4 hours. The result for microscopy should be made available within 2hr of the Gram stain.

If processing is delayed, refrigeration is preferable to storage at ambient temperature.

4 Specimen processing/procedure

4.1 Test selection

Divide specimen on receipt for appropriate procedures such as microscopy and culture for *Mycobacterium* (B 40 – Investigation of specimens for *Mycobacterium* species), and/or Legionella.

4.2 Appearance

Describe colour, opacity and if a clot is present.

4.3 Sample preparation

For all except clotted or very viscous specimens:

- centrifuge in a sterile, capped, conical-bottomed container at 1200xg for 5-10mins or use a cytospin preparation

 Note: If investigation for *Mycobacterium* species is also requested, the centrifugation time may be increased to 15-20mins and the same deposit used for this as well as routine microscopy and culture

- transfer all but the last 0.5mL of the supernatant using a sterile pipette to another CE Marked leak proof container in a sealed plastic bag, for additional testing if required (eg virology)

- resuspend the deposit in the remaining fluid
4.4 Microscopy (refer TP 39 – Staining procedures)

4.4.1 Standard

Gram stain
For all except clotted or very viscous specimens:
- place one drop of centrifuged deposit using a sterile pipette on to a clean microscope slide
- spread this with a sterile loop to make a thin smear for Gram staining

Clotted specimens
If possible, the clot should be broken up with a sterile pipette and a portion used to make a smear for Gram staining.

Total white cell count
The presence of a clot will invalidate a cell count.

If specifically requested for the differential diagnosis of Spontaneous Bacterial Peritonitis, or according to local protocol, perform a total cell count on the uncentrifuged specimen in a counting chamber. A full blood count, as well as a differential count, can also be performed using automated blood-cell analysers provided that they have been validated for body fluid microscopies, on specimens other than blood, and provided that the specimens which are acceptable are defined along with exclusion criteria and in which circumstances a manual microscope might be preferable 36-39.

4.4.2 Supplementary

Differential leucocyte count
Differentiating between polymorphonuclear leucocytes and mononuclear leucocytes may be performed in two ways:

1. **Counting chamber method: recommended for lower WBC counts.**
 a) **Non- or lightly-bloodstained specimens**
 - stain the uncentrifuged fluid with 0.1% stain solution such as toluidine, methylene or nile blue. This stains the leucocyte nuclei thus aiding differentiation of the cells
 - the dilution factor must be considered when calculating the final cell count
 - count and record the numbers of each leucocyte type
 - express the leucocyte count as number of cells per litre

 b) **Heavily bloodstained specimens**
 - dilute specimen with WBC diluting fluid and leave for 5 minutes before loading the counting chamber. This will lyse the red blood cells and stain the leucocyte nuclei for differentiation
 - count and record the number of each leucocyte type. The dilution factor must be considered when calculating the final cell count
 - express the leucocyte count as number of cells per litre
2. Stained method

Recommended for very high WBC counts where differentiation in the counting chamber is difficult

- prepare a slide from the centrifuged deposit or cytospin preparations as for the Gram stain but allow to air dry
- fix in alcohol and stain with a stain suitable for WBC morphology
 Note: Heat fixation distorts cellular morphology
- count and record the number of each leucocyte type as a percentage of the total

Microscopy for crystals

Performed only on request or according to local protocols

- examine the centrifuged deposit for the presence of crystals with a polarising microscope (sometimes such examinations are referred to other departments or pathology disciplines such as rheumatology, histopathology or cytology) depending on local protocols
- the needle-shaped, birefringent crystals of sodium urate are diagnostic of gout
- the rod or rhomboid-shaped crystals of calcium pyrophosphate are weakly birefringent and are indicative of pseudo-gout. Note that joints affected by gout can be secondarily infected

Other microscopy

- microscopy for *Mycobacterium* species - see B 40 – Investigation of specimens for *Mycobacterium* species
- direct immunofluorescent antibody for *Legionella* species
- indirect immunofluorescent antibody test for *P. jirovecii* (often performed in other pathology disciplines, eg histology)

Note: Methods for staining procedures and immunofluorescent techniques are contained in separate SMIs.

4.5 Culture and investigation

Pre-treatment

Standard

Centrifuge specimen (already performed for microscopy – see Section 4.4).

Note: Every sample should be cultured regardless of cell count.

If blood culture bottles are used, inoculate bottles with the uncentrifuged specimen, ideally at the “bedside”.

Supplementary

Mycobacterium species - see B 40 – Investigation of specimens for *Mycobacterium* species.
Specimen processing
Inoculate each agar plate and the enrichment broth with the centrifuged deposit (see Q 5 – Inoculation of culture media for bacteriology) using a sterile pipette.
For the isolation of individual colonies, spread inoculum with a sterile loop.

Clotted specimens
Inoculate the clot fragments to the agar plates and the enrichment broth.
If the specimen contains only a small clot, this should be included either in the enrichment culture or inoculated onto the chocolate agar plate. The unclotted portion of the specimen should be cultured in the normal way as described above.

Supplementary
If culture negative from a patient where infection is strongly implicated, consider other non-culture methods for identification eg 16S rDNA PCR, etc.
4.5.1 Culture media, conditions and organisms

<table>
<thead>
<tr>
<th>Clinical details/ conditions</th>
<th>Specimen</th>
<th>Standard media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection suspected in a normally sterile site</td>
<td>Amniotic fluid, bursa fluid, pericardial fluid, synovial (joint) fluid, peritoneal fluid (ascites), pleural fluid</td>
<td>Blood agar</td>
<td>Temp °C 35-37, Atmos 5-10% CO₂, Time 40-48hr daily</td>
<td>Any organism</td>
<td>Any organism</td>
</tr>
<tr>
<td></td>
<td>Fastidious anaerobe agar</td>
<td></td>
<td>Temp °C 35-37, Atmos anaerobic, Time 40-48hr*, ≥40hr</td>
<td>Anaerobes</td>
<td>Anaerobes</td>
</tr>
<tr>
<td></td>
<td>Chocolate agar</td>
<td></td>
<td>Temp °C 35-37, Atmos 5-10% CO₂, Time 40-48hr daily</td>
<td>Any organism</td>
<td>Any organism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temp °C 35-37, Atmos continuous monitoring</td>
<td>N/A</td>
<td>Any organism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If supplemented blood culture bottles† are used then that may replace the need for the plates outlined above, based on local risk assessment. Or anaerobic broth then subcultured to the plates above.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For these situations, add the following:</td>
<td>Specimen</td>
<td>Optional media</td>
<td>Incubation</td>
<td>Cultures read</td>
<td>Target organism(s)</td>
</tr>
<tr>
<td></td>
<td>Ascitic fluid, Peritoneal fluid</td>
<td>Neomycin fastidious anaerobe agar</td>
<td>Temp °C 35-37, Atmos anaerobic, Time 40 – 48hr*</td>
<td>≥48hr</td>
<td>Anaerobes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLED or MacConkey agar</td>
<td>Temp °C 35-37, Atmos air, Time 16-24hr</td>
<td>≥16hr</td>
<td>Enterobacteriaceae</td>
</tr>
<tr>
<td>Other organisms for consideration – Mycobacterium (B 40), Chlamydia species, Pneumocystis jirovecii, viruses.</td>
<td>Specimen</td>
<td>Optional media</td>
<td>Incubation</td>
<td>Cultures read</td>
<td>Target organism(s)</td>
</tr>
<tr>
<td></td>
<td>As appropriate</td>
<td>Staph/strep selective agar</td>
<td>Temp °C 35-37, Atmos air, Time 16-24hr</td>
<td>≥16hr</td>
<td>S. aureus β-haemolytic streptococci</td>
</tr>
<tr>
<td></td>
<td>As appropriate</td>
<td>Sabouraud or mycosel agar</td>
<td>Temp °C 35-37, Atmos air, Time 21 days</td>
<td>10 and 21 days</td>
<td>Moulds and Yeasts</td>
</tr>
</tbody>
</table>

* plates can be incubated up to 5-7 days if required for example if Norcardia or Actinomycyes suspected.

† follow manufacturer’s recommendations.
Investigation of Fluids from Normally Sterile Sites

4.6 Identification

Refer to individual SMIs for organism identification.

4.6.1 Minimum level of identification in the laboratory

<table>
<thead>
<tr>
<th>Anaerobes</th>
<th>"anaerobes" level</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-haemolytic streptococci</td>
<td>Lancefield group level</td>
</tr>
<tr>
<td>Coagulase negative staphylococci</td>
<td>"coagulase negative" level</td>
</tr>
<tr>
<td>All other organisms (including moulds and yeast)</td>
<td>species level</td>
</tr>
<tr>
<td>Mycobacterium species</td>
<td>B 40 - Investigation of specimens for Mycobacterium species</td>
</tr>
</tbody>
</table>

Organisms may be further identified if this is clinically or epidemiologically indicated.

4.7 Antimicrobial susceptibility testing

Refer to British Society for Antimicrobial Chemotherapy (BSAC) and/or EUCAST guidelines.

4.8 Referral for outbreak investigations

N/A

4.9 Referral to reference laboratories

For information on the tests offered, turn around times, transport procedure and the other requirements of the reference laboratory click here for user manuals and request forms.

Organisms with unusual or unexpected resistance, and whenever there is a laboratory problem, or anomaly that requires elucidation should be sent to the appropriate reference laboratory.

Contact appropriate devolved national reference laboratory for information on the tests available, turn around times, transport procedure and any other requirements for sample submission:

- **England and Wales**

- **Scotland**

- **Northern Ireland**

5 Reporting procedure

5.1 Microscopy

Gram stain

Report on WBCs and organisms detected.
Cell count (if requested)
Report numbers of WBCs x 10^6 per litre.
Also report PMNs and mononuclear leucocytes as percentage of the total WBCs, if requested.

P. jirovecii immunofluorescence
Report *P. jirovecii* cysts detected or not detected by immunofluorescence.

Microscopy for *Legionella* and *Mycobacterium* species (B 40 – Investigation of specimens for *Mycobacterium* species).

Microscopy reporting time
Urgent microscopy results to be telephoned or sent electronically within 2 hours of processing.
Written report, 16-72hr.

5.2 Culture
Report the organisms isolated or
Report absence of growth.
Also, report results of supplementary investigations.

5.3 Antimicrobial susceptibility testing
Report susceptibilities as clinically indicated. Prudent use of antimicrobials according to local and national protocols is recommended.

6 Notification to PHE or equivalent in the devolved administrations

The Health Protection (Notification) regulations 2010 require diagnostic laboratories to notify Public Health England (PHE) when they identify the causative agents that are listed in Schedule 2 of the Regulations. Notifications must be provided in writing, on paper or electronically, within seven days. Urgent cases should be notified orally and as soon as possible, recommended within 24 hours. These should be followed up by written notification within seven days.

For the purposes of the Notification Regulations, the recipient of laboratory notifications is the local PHE Health Protection Team. If a case has already been notified by a registered medical practitioner, the diagnostic laboratory is still required to notify the case if they identify any evidence of an infection caused by a notifiable causative agent.

Notification under the Health Protection (Notification) Regulations 2010 does not replace voluntary reporting to PHE. The vast majority of NHS laboratories voluntarily report a wide range of laboratory diagnoses of causative agents to PHE and many PHE Health protection Teams have agreements with local laboratories for urgent reporting of some infections. This should continue.

Note: The Health Protection Legislation Guidance (2010) includes reporting of Human Immunodeficiency Virus (HIV) & Sexually Transmitted Infections (STIs), Healthcare Associated Infections (HCAIs) and Creutzfeldt–Jakob disease (CJD) under
‘Notification Duties of Registered Medical Practitioners’: it is not noted under ‘Notification Duties of Diagnostic Laboratories’.

https://www.gov.uk/government/organisations/public-health-england/about/our-governance#health-protection-regulations-2010

Other arrangements exist in Scotland[^46[^47], Wales[^48] and Northern Ireland[^49].
Appendix: Investigation of fluids from normally sterile sites

Details / clinical condition
Infection suspected in a normally sterile site

Sample type
Amniotic fluid, bursa fluid, pericardial fluid, synovial (joint) fluid, peritoneal fluid (ascites), pleural fluid

Standard media

- Blood agar
 - Incubate at: 35-37°C, 5-10% CO₂, 40-48hr, Read daily
 - Any organism refers to ID 8, 14, 15, 25

- Fastidious anaerobic agar (FAA)
 - Incubate at: 35-37°C, Anaerobic, 5 – 7d, Read at 48hr and 5d
 - Anaerobes refer to ID 8, 14, 15, 25

- Chocolate agar
 - Incubate at: 35-37°C, 5-10% CO₂, 40-48hr, Read daily
 - Any organisms refer to ID 8, 14, 15, 25

- Neomycin FAA
 - Incubate at: 35-37°C, Anaerobic, 5 – 7d, Read at 48hr and 5d
 - Anaerobes refer to ID 8, 14, 15, 25

- CLED agar
 - Incubate at: 35-37°C, In air, 16-24hr, Read at 16hr
 - Enterobacteriaceae refer to ID 16

Supplementary media

Optional media

- If microscopy suggestive of mixed infection
 - Neomycin FAA
 - CLED agar

If fungi suspected clinically

- Ascitic fluid
 - Peritoneal fluid

Details / clinical condition
Peritonitis

Sample type
Ascitic fluid
Peritoneal fluid

Supplemented blood culture bottles or anaerobic broth

Subcultured at 40hr on the standard media as appropriate to clinical details

Bacteriology | B 26 | Issue no: 6.1 | Issue date: 08.03.17 | Page: 20 of 23
Investigation of Fluids from Normally Sterile Sites

References

18. European Parliament. UK Standards for Microbiology Investigations (SMIs) use the term "CE marked leak proof container" to describe containers bearing the CE marking used for the collection and transport of clinical specimens. The requirements for specimen containers are given in the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) which states: "The design must allow easy handling and, where necessary, reduce as far as possible contamination of, and
leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes”.

