UK Standards for Microbiology Investigations

ONPG (β-Galactosidase) Test
Acknowledgments

UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations-steering-committee).

The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content.

For further information please contact us at:

Standards Unit
Microbiology Services
Public Health England
61 Colindale Avenue
London NW9 5EQ
E-mail: standards@phe.gov.uk

Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories

UK Standards for Microbiology Investigations are produced in association with:

![Logos](https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories)

Logos correct at time of publishing.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>2</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>AMENDMENT TABLE</td>
<td>4</td>
</tr>
<tr>
<td>UK STANDARDS FOR MICROBIOLOGY INVESTIGATIONS: SCOPE AND PURPOSE</td>
<td>5</td>
</tr>
<tr>
<td>SCOPE OF DOCUMENT</td>
<td>8</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>TECHNICAL INFORMATION/LIMITATIONS</td>
<td>8</td>
</tr>
<tr>
<td>1 SAFETY CONSIDERATIONS</td>
<td>10</td>
</tr>
<tr>
<td>2 REAGENTS AND EQUIPMENT</td>
<td>10</td>
</tr>
<tr>
<td>3 QUALITY CONTROL ORGANISMS</td>
<td>10</td>
</tr>
<tr>
<td>4 PROCEDURE AND RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>APPENDIX: ONPG (β-GALACTOSIDASE) TEST</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>13</td>
</tr>
</tbody>
</table>
Amendment Table

Each SMI method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@phe.gov.uk.

New or revised documents should be controlled within the laboratory in accordance with the local quality management system.

<table>
<thead>
<tr>
<th>Amendment No/Date.</th>
<th>6/21.11.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue no. discarded.</td>
<td>2.3</td>
</tr>
<tr>
<td>Insert Issue no.</td>
<td>3</td>
</tr>
</tbody>
</table>

### Section(s) involved	Amendment
Whole document. | Hyperlinks updated to gov.uk.
Page 2. | Updated logos added.

Introduction.
This section has been updated to include the reaction showing the fermentation of the colourless ONPG (o-nitrophenyl-β-D-galactopyranoside) in the presence of β-galactosidase to produce galactose and o-nitrophenol.

Technical information/Limitations.
This section has been updated.

Safety Considerations.
References updated.

Quality control Organisms.
This has been updated to show the organisms to use when testing particular organisms.

Flowchart.
This flowchart has been amended for easy guidance.

References.
Some references updated.
UK Standards for Microbiology Investigations*

Scope and Purpose

Users of SMIs
- SMIs are primarily intended as a general resource for practising professionals operating in the field of laboratory medicine and infection specialties in the UK.
- SMIs provide clinicians with information about the available test repertoire and the standard of laboratory services they should expect for the investigation of infection in their patients, as well as providing information that aids the electronic ordering of appropriate tests.
- SMIs provide commissioners of healthcare services with the appropriateness and standard of microbiology investigations they should be seeking as part of the clinical and public health care package for their population.

Background to SMIs
SMIs comprise a collection of recommended algorithms and procedures covering all stages of the investigative process in microbiology from the pre-analytical (clinical syndrome) stage to the analytical (laboratory testing) and post analytical (result interpretation and reporting) stages.

Syndromic algorithms are supported by more detailed documents containing advice on the investigation of specific diseases and infections. Guidance notes cover the clinical background, differential diagnosis, and appropriate investigation of particular clinical conditions. Quality guidance notes describe laboratory processes which underpin quality, for example assay validation.

Standardisation of the diagnostic process through the application of SMIs helps to assure the equivalence of investigation strategies in different laboratories across the UK and is essential for public health surveillance, research and development activities.

Equal Partnership Working
SMIs are developed in equal partnership with PHE, NHS, Royal College of Pathologists and professional societies.

Inclusion of a logo in an SMI indicates participation of the society in equal partnership and support for the objectives and process of preparing SMIs. Nominees of professional societies are members of the Steering Committee and Working Groups which develop SMIs. The views of nominees cannot be rigorously representative of the members of their nominating organisations nor the corporate views of their organisations. Nominees act as a conduit for two way reporting and dialogue. Representative views are sought through the consultation process.

SMIs are developed, reviewed and updated through a wide consultation process.

Microbiology is used as a generic term to include the two GMC-recognised specialties of Medical Microbiology (which includes Bacteriology, Mycology and Parasitology) and Medical Virology.
Quality Assurance

NICE has accredited the process used by the SMI Working Groups to produce SMIs. The accreditation is applicable to all guidance produced since October 2009. The process for the development of SMIs is certified to ISO 9001:2008.

SMIs represent a good standard of practice to which all clinical and public health microbiology laboratories in the UK are expected to work. SMIs are NICE accredited and represent neither minimum standards of practice nor the highest level of complex laboratory investigation possible. In using SMIs, laboratories should take account of local requirements and undertake additional investigations where appropriate. SMIs help laboratories to meet accreditation requirements by promoting high quality practices which are auditable. SMIs also provide a reference point for method development.

The performance of SMIs depends on competent staff and appropriate quality reagents and equipment. Laboratories should ensure that all commercial and in-house tests have been validated and shown to be fit for purpose. Laboratories should participate in external quality assessment schemes and undertake relevant internal quality control procedures.

Patient and Public Involvement

The SMI Working Groups are committed to patient and public involvement in the development of SMIs. By involving the public, health professionals, scientists and voluntary organisations the resulting SMI will be robust and meet the needs of the user. An opportunity is given to members of the public to contribute to consultations through our open access website.

Information Governance and Equality

PHE is a Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

The development of SMIs are subject to PHE Equality objectives https://www.gov.uk/government/organisations/public-health-england/about/equality-and-diversity. The SMI Working Groups are committed to achieving the equality objectives by effective consultation with members of the public, partners, stakeholders and specialist interest groups.

Legal Statement

Whilst every care has been taken in the preparation of SMIs, PHE and any supporting organisation, shall, to the greatest extent possible under any applicable law, exclude liability for all losses, costs, claims, damages or expenses arising out of or connected with the use of an SMI or any information contained therein. If alterations are made to an SMI, it must be made clear where and by whom such changes have been made.

The evidence base and microbial taxonomy for the SMI is as complete as possible at the time of issue. Any omissions and new material will be considered at the next review. These standards can only be superseded by revisions of the standard, legislative action, or by NICE accredited guidance.

SMIs are Crown copyright which should be acknowledged where appropriate.
Scope of Document

The test is important in differentiating among the Enterobacteriaceae which are commonly classified according to their ability to ferment lactose. It is also used to differentiate *Neisseria lactamica* from other fastidious *Neisseria* species.

This SMI should be used in conjunction with other SMIs.

Introduction

The ONPG (o-nitrophenyl-β-D-galactopyranoside) test is used to determine the presence or absence of the enzyme β-galactosidase in an organism\(^1\). The presence of two enzymes, permease and β-galactosidase, are required to demonstrate lactose fermentation. Permease allows the lactose to enter the bacterial cell. In lactose-fermenting bacteria the breakdown of lactose to glucose and galactose involves the enzyme beta-galactosidase\(^2\). True lactose non-fermenters do not possess either of these enzymes. Late lactose fermenting organisms do not have permease, but do possess β-galactosidase. ONPG is similar in structure to lactose. If β-galactosidase is present, the colourless ONPG is split into galactose and o-nitrophenol, a yellow compound\(^3,4\).

Note: “ONPG” is a Chemical analog of the sugar Lactose and is hydrolysed by the Enzyme Lactase. Like β-galactosidase, lactase breaks lactose down into galactose and glucose.

Technical Information/Limitations

The test should be performed, where possible, from a non-selective medium. If the test is performed from selective agar, a purity plate must be included to check for purity of the organism. Organisms that have grown on glucose containing media show less reactivity than those grown on lactose containing media. Glucose inhibits β-galactosidase.

The test cannot be performed on organisms containing a yellow pigment.

A heavy inoculum is necessary to obtain a high concentration of enzyme.
The ONPG solution must be correctly buffered to prevent false negative and false positive reactions.
Discard the substrate if it looks yellow prior to inoculation.
1 Safety Considerations

Refer to current guidance on the safe handling of all organisms and reagents documented in this SMI.

All work likely to generate aerosols must be performed in a microbiological safety cabinet.

The above guidance should be supplemented with local COSHH and risk assessments.

Compliance with postal and transport regulations is essential.

2 Reagents and Equipment

Discrete bacterial colonies growing on solid medium.

ONPG broth (alternatively, commercially available prepared ONPG discs may be used according to the manufacturer’s instructions).

Bacteriological straight wire/loop (preferably nichrome) or disposable alternative.

3 Quality Control Organisms

For Enterobacteriaceae,

Positive Control
Escherichia coli NCTC 10418

Negative Control
Proteus mirabilis NCTC 10975

For Neisseria species,

Positive Control
Neisseria lactamica NCTC 10617

Negative Control
Neisseria gonorrhoeae NCTC 8375

Note: These strains are validated by NCTC to give this result.

4 Procedure and Results

- A loopful of test organism from a culture plate or slant should be sufficient. Include the positive and negative controls with every batch of tests
- Inoculate tubes containing ONPG reagent and incubate at 35-37°C for up to 24 hr
- Examine for yellow colour after 4 hr and for up to 24 hr
Positive Result
Yellow colour (indicates lactose fermenter).

Negative Result
Colourless/pale yellow (indicates lactose non-fermenter).
Appendix: ONPG (ß-Galactosidase) Test

1. Isolate discrete colony

2. Inoculate tubes containing ONPG reagent with the test organism and the controls

3. Incubate tubes at 35-37°C up to 24hr

4. Examine for yellow colour after 4hr and again up to 24hr

- Positive: Yellow Colour
- Negative: Colourless/pale yellow

Note:

For Enterobacteriaceae
Positive control: Escherichia coli NCTC 10418
Negative control: Proteus mirabilis NCTC 10975

For Neisseria species
Positive control: Neisseria lactamica NCTC 10617
Negative control: Neisseria gonorrhoeae NCTC 8375

The flowchart is for guidance only.
References

5. European Parliament. UK Standards for Microbiology Investigations (SMIs) use the term "CE marked leak proof container" to describe containers bearing the CE marking used for the collection and transport of clinical specimens. The requirements for specimen containers are given in the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) which states: "The design must allow easy handling and, where necessary, reduce as far as possible contamination of, and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes".

