ANNEX I

Anatomy and physiology

To provide adequate medical care on board ship there is no need to have a detailed knowledge of anatomy (structure of the body) or of physiology (function of bodily systems). Nevertheless the information provided in this Annex could be useful when examining a patient or obtaining and acting on radio medical advice.

The principal bones of the skeleton and the main muscles of the body are illustrated in Figures I.1 and I.2. The position of the organs in the chest and abdomen is depicted in Plates 14 and 15.

The bone structure

The skeleton, which consists of bones and cartilages, provides a rigid framework. The separate bones and cartilages are held together firmly at the joints by strong bands of connective tissue (the ligaments). Each bone is enveloped in a very tough adherent sheath of fibrous tissue. Between the sheath and the bone surface is a layer of bone-forming cells which can produce new bone in the event of a fracture.

The shaft of a typical long bone has a thick wall of dense bone which forms a hollow cylinder enclosing a central canal containing bone marrow. At each end the shaft is expanded to make the joint surface. These surfaces are covered by a smooth layer of cartilage to permit movements without causing friction.

Voluntary muscles

These form the bulk of the fleshy parts of the body. They are fixed to the bones by blending with the sheaths of fibrous tissue surrounding the bones. Some are attached directly to a wide area of bone surface but others taper to form a strong cord (tendon or leader) which is attached at a specific place on a bone. Muscles, and especially those of the limbs, are arranged in two opposing groups. Contraction of one group in response to an impulse through the nerve supply must be accompanied by simultaneous relaxation of the opposing group, or movement will not take place. These movements are under conscious control.

Involuntary muscles

These are found in the stomach and intestines, in the heart and blood vessels, and also in other internal organs of the body. They continue to work throughout life as part of natural body function outside the control of personal will.
Circulatory system

Blood

The body contains about 5 litres of blood which consists basically of four constituents: plasma; red cells; white cells; and platelet cells.

The plasma is the liquid component of the blood which circulates to all the tissue cells throughout the body. It distributes food, water, salts and heat and collects waste products which are subsequently excreted.

The red cells predominate and give the blood its colour. This colour is derived from a complex iron compound (haemoglobin) which is the main oxygen carrier.

The white cells give protection against infection by attacking and killing bacteria and also by producing substances which are necessary for building up resistance to further infections.

The main purpose of platelets is to assist in the blood clotting mechanism.

The heart and blood vessels

The heart is a thick-walled muscular pump about the size of a clenched fist. It is divided in the mid line into two sides which do not communicate. Each side has an upper and lower chamber which communicate through a main heart valve. The separate chambers are each served by a major blood vessel that either brings blood to the chamber or carries it away. See Plate 13.

The right side receives venous blood which, having been circulated around the body, has given up its oxygen and collected carbon dioxide. This blood is pumped through the lungs where it is replenished with oxygen and discards the carbon dioxide. As purified blood, it returns to the left side to be pumped through the arteries to all parts of the body.

The blood vessels form a closed system of tubes. The arteries, which have to take the full force of the pumping pressure, have thick walls containing muscle fibres and elastic tissue. Each heart beat widens the bore of the arteries to accommodate the surge of blood. Between beats the bore is returned to normal by the action of the muscle fibres and elastic tissue. Where an artery runs close to the body surface, the changing pressures can be felt as a pulse.

The arteries penetrate to all parts of the body, dividing and sub-dividing until they narrow to form very thin-walled vessels (capillaries). The capillaries then join with the venous network which returns the blood to the heart (Figure I.2). The size of veins increases until the heart is reached.

The capillary system is vital to the life of all tissues. The thin capillary vessel wall allows nutrients, oxygen, heat and beneficial chemical substance to enter the cells and, most important, waste products to be passed out into the blood.
Breathing system

Every time a breath is taken in, the air (20% oxygen) passes through the nose or mouth and then past the larynx or voice box into the windpipe (trachea) which is about 12.5 cm long. At its lower end the windpipe divides into two main tubes called bronchi (Figure I.3).

The main air passage in each lung (the bronchus) divides into successively smaller branches which carry inhaled air to all parts of the lung. Each small branch terminates by forming a cluster of very tiny air sacs (the alveoli). A fine network of blood vessels covers the surface of every air sac thereby permitting gas exchange by diffusion. Oxygen from the inspired air passes through the thin tissues to combine with the haemoglobin of the red blood cells. Waste gases, mainly carbon-dioxide, pass from blood into the air sacs and are expelled on breathing out.

\[
\text{Haemoglobin} + \text{Oxygen} = \text{Oxyhaemoglobin} \\
\text{ (purple red colour)} \\
\text{ (bright red colour of normal blood)}
\]

Whenever the blood is insufficiently oxygenated, as in pneumonia, the purple red hue of the blood shows as a blue tinge of the lips.

Each lung is covered by a lubricated lining called the pleura. The inner side of the chest wall is also covered by a similar lining. These two layers of pleura are in contact and slide smoothly over one another during breathing.

The act of breathing is mainly due to the diaphragm moving up and down. The diaphragm is a large dome-shaped muscle which separates the chest from the abdominal cavity. When the diaphragm muscle contracts, its dome becomes flattened and draws down the lungs, causing air to enter them; when it relaxes the lungs become smaller and the air in them is expelled. The muscles of the abdomen also help in breathing. When they tighten up, they press the abdominal contents up against the diaphragm and help in expelling air from the lungs; when they relax, they assist the diaphragm in drawing down the lungs as breathing in takes place.

The normal rate of breathing at rest is 16-18 times a minute. This rate increases considerably with exertion and also with certain diseases, especially those affecting the heart and lungs.
Digestive system

The abdomen is a cavity shut off from the chest by the diaphragm. The cavity is lined by a sheath of membrane (the peritoneum) which also enfolds some of the abdominal organs. The sheath secretes fluid which keeps the abdominal contents moist and prevents friction.

The digestive tract

This is a passage consisting of the gullet (oesophagus), the stomach, the small intestine, the large intestine, the rectum and the anus.

The gullet is a straight muscular tube which joins the throat to the stomach. It passes down through the back of the chest cavity and goes through an opening in the diaphragm to connect with the upper part of the stomach.

The stomach is a J shaped pouch. It enlarges when food or liquid is consumed. The lower part of the stomach is narrow where it joins with the first part (duodenum) of the small intestine.

The small intestine is a narrow-bore coiled tube, roughly 7.5 metres long, which occupies most of the central part of the abdominal cavity. The internal surface of the wall bears a large number of very small folds which project inwards to increase the surface area in contact with the contents of the intestine. The small intestine joins with the large intestine in the right lower quarter of the abdomen.

The large intestine is a wide-bore tube, roughly 1.5 metres long, which arches upwards and across the abdominal cavity before descending the left side to join with the rectum.

The rectum is roughly 150 mm long and is continuous at its lower end with the very short anal canal which opens to the exterior.

The digestive process

Digestion is the physical and chemical breakdown of food into useful products which are then absorbed by the capillaries of the blood vessels serving the gut. The unwanted residue of food is excreted as faeces.

The digestive tract walls contain involuntary muscle which by contractions moves the contents through the entire length until they reach the rectum where they are stored as faeces prior to evacuation. At certain places such as the entrance and exit to the stomach and at the anus, circular bands of muscle capable of constriction (sphincters) act as valves to shut off the flow.

The physical breakdown of food is accomplished by chewing, by the churning actions of the gut and by the addition of special digestive juices to the food. This begins in the mouth when food is mixed with saliva which contains enzymes. In the stomach, acid gastric juice is secreted by the stomach walls and acts on the food which may be retained there for several hours before passing through the duodenum. Small ducts from the bile system of the liver and also from the pancreas open into the duodenum. These ducts provide juices which are partly designed to neutralise the acid from the stomach juice and thus allow the enzymes secreted by the duodenal wall to act more efficiently. The churning of the gut then ensures a thorough mixing of food and digestive juices throughout the length of the small intestine where most of the chemical breakdown takes place. The main functions of the large intestine are to re-absorb water from the food residue and to reduce the bulk of the faeces.

The liver

The abdominal veins drain into the liver and carry to it the useful products which have been absorbed during the digestive process. One of the main liver functions is to act as a chemical factory which processes these products into substances necessary for nutrition.
Urinary system

The kidneys are located at the back of the upper part of the abdominal cavity, one on each side of the spine (see Plate 14). They are embedded in fat to cushion them from injury.

The main kidney function is to remove water and certain harmful waste products from the blood and, by this filtering process, to form urine. They control total body water and the concentration of various chemical substances in the blood. The kidneys also play an important part in maintaining a steady level of blood pressure.

The urine is carried downward from the kidneys to the urinary bladder by tubes of small calibre (the ureters); one tube for each kidney. The urinary bladder is a muscular bag situated in the front part of the cavity formed by the pelvic bones. The bladder acts as a reservoir where urine collects until it is expelled by voluntary muscular contractions through a tube (the urethra) which leaves from the bladder base.

The male urethra measures 18 to 20 cm from the bladder to the external opening at the end of the penis. A knowledge of this length is important when passing a catheter. The female urethra is much shorter, being about 4 cm in length. It runs embedded in the upper vaginal wall to the external opening just above the vaginal orifice.

Nervous system

Cerebro-spinal nervous system

This consists of the brain, spinal cord and the associated nerves. The brain is in the cavity of the skull. It is the co-ordinating centre for the nervous system, processing incoming information from nerves concerned with sight, smell, taste, hearing, sensation etc. and controlling various parts of the body, particularly muscles by way of outgoing (motor nerves). Higher functions include intellect, memory, personality etc.

The spinal cord emerges from the base of the brain and leaves the skull into the bony vertebral canal. It is protected by vertebrae throughout its length, and nerves emerge at regular intervals. These nerves control muscles and transmit sensation back through the spinal column to the brain.

Sympathetic nervous system

This is a fine network of nerves not under direct voluntary control influencing the function of various organs, especially gut, bladder, blood vessels and heart.

Skin

This protects and covers the body. It consists of two layers. The outer layer is hard and contains no blood vessels or nerves. This outer layer protects the inner layer, where there are sensitive nerve endings, numerous sweat glands and the roots of the hair.

Sweat consists of water, salt and some impurities from the blood. The evaporation of the sweat cools the body, and helps to regulate its temperature.
ANNEX II

Anatomical drawings

Figure I.1 The skeleton (front)
BACK VIEW OF SKELETON
including
Parietal and occipital bones (part of cranium)
Vertebral column (spinal column)
Scapula (shoulder-blade)
Sacrum (base of the spine)
Coccyx (small bones at the base of the spine – tail bone)
Os calcis (the heel)

Figure I.2 The skeleton (rear)
Figure II.3 Main voluntary muscles (front)
Figure II.4 Main voluntary muscles (rear)
Plate 13 Organs of chest and abdomen (front)
Plate 14 Organs of chest and abdomen (rear)
Catering staff, personal hygiene 90
Catheterisation, male 156–8
Cellulitis 99, 172–3
Centipedes 172
Cerebro-spinal fluid, leakage 75
Chancroid 117, 119–20
Chapms 175
Charcoal, oral 47
Chemical splashes 17
Chest compression 16
Allergic reaction 181
Baby not breathing after delivery 200
Coronary thrombosis 129
Chest injuries 38–9
Chest organs 224–5
Chest pain 128, 135
Associated signs 130–1
Chickenpox 99
Chilblains 175
Child inside womb 197
Childbirth 197–200
Chlamydia 117
Chlamydial lymphogranuloma 117, 121
Chlorhexidine gluconate 20% (HIBISCUB) 189
Chlorinated lime 86–7
Chlorine 45
Compound 86
Chloroquine 106–7
Chlorpromazine 158–9
Delirium tremens 180
Choking 18
Cholecystitis 130–1, 145–6
Cholera 59, 88, 100, 146
Chostochondritis 136
Cimetidine 150
Ciprofloxacin 102
After delivery 199
Badillary dyentery 147
Bronchitis 135
Cholecystitis 146
Genital ulcers 119
Otolaryngia 162
Urethritis 118
Circulatory collapse 19–20
Circulatory-system 216
Cleanliness 69
On board ships 90
Clove oil 165–6
Godine phosphate 168
Bell in the ear 162
Coronary thrombosis 129
Gout 168–9
Head injury 77
Meningitis 108
Twisted testicle 154
Urticaria 178
Coil 195
Cold in the chest 134
Colds 95
Collapsed lung 137
Colar organs 28
Common cold 182
Virus 85
Communicability period 96
Communicable diseases 95–115
Infectious agents 95
Management, general rules 97
Symptoms and signs 96
Transmision modes 95–6
Composite temperature 94
Compression of brain 75
Comprensis test, pelvis fracture 36
Concussion 77
Contact 96
Contraception 195
Contraceptive pill 195
Convulsions 19, 48
Head injury 76
Corneal abrasion 79
Coronary arteries 128
Compression test, pelvis fracture 36
Compression of brain 75
Compression test, pelvis fracture 36
Consciousness level 74
Constipation 204
Contact 96
Contraception 195
Contraceptive pill 195
Convulsions 19, 48
Head injury 76
Corneal abrasion 79
Coronary arteries 128
Coronary thrombosis 128–31
Crepitus 191
Cresol 48
Creutzfeld Jacob disease 95
Crush injuries 25
Hand 30
Crutch bandage 10
Curly weed rash 192
Cyamid 48
Cystitis 140–1, 155–6
Dipsooe 106
Death
Cause of 206
Disposal of the body 207
Mistaken 205
Procedure after 206–7
Signs 205
Dehydration 61–2
Alcoholic 179–80
Cholera 100
Survivors 204
Delirium tremens 180
Deltoid muscle, intramuscular injection 66
Dengue fever 101
Dental abscess 160
Dental injuries 81–2
Dental pain 165
Deodorant 91
Depression 158–9
Ergometrine 194, 198–9
Erysipelas 99
Erythromycin 114
After delivery 199
Appendicitis 144
Bronchitis 195
Intestinal colic 138–9, 149
Intestinal obstruction 140–1, 149
Intestine 218, 224–5
Intra-uterine (coil) device 123
Involuntary muscles 215
Isolation 92
Period 46
Jarisch-Herxheimer reaction 119, 121
Jaundice 149
Gallstone colic 145
Glandular fever 103
Hepatitis 104
Yellow fever 115
Jaw fracture 32, 81–2
Muscle spasm 92
Jellyfish 171
Jumbo wrist 191
Kidney(s) 219, 225
Stones 138–9
Kneecap 124, 177
Bandage 10
Fracture 30–1
Kuru 95
Labour
After delivery 199
Birth 198–9
Onset 194, 198
Preparations 198
Problems during 200
Stages 197
Subsequent management 179
Lacerations 69
Laerdal Pocket Mask 46
Laryngitis 167
Laxative, after delivery 199
Legionnaires' disease 85
Legs, fractures 32
Lice
Head 177
Pubic 177
Lignocaine hydrochloride 71
Fish hook removal 192
Gel 147
Injection, pattern 171
Pulp space infection 190
Sea urchins 172
Lindane (1%) cream 124, 177
Liver 218, 224
Local anaesthetic 71
Lumbago 94
Lungs 217
Lymph node
Location 186
Swelling 122
Lymphadenitis 186–7
Lymphangitis 185–6
Lymphatic inflammation 185–6
Lymphoid fever 90
Madness 158
Magnesium trisilicate compound 137, 146, 150
Malaria 85, 95, 146
Areas 105
Guidelines 106
Mosquito bites, avoidance 105
Prevention 105–6
Treatment 106–7
Malnutrition 204
Maloprim 106
Measles 95, 107, 134
Med Alert Bracelet 181
Medivac service by helicopter 211–13
Mefloquine 106–7
Melaena 58
Meningitis 107–8
Headache 163
Knee straightening test 108
Neck bending test 108
Meningococcal sepsis 97
Mental illness 158–9
Serious 62–3
Metacarpal bones 29
Metazoa 95
Methyl chloride 48–9
Metronidazole
Amoebic dysentery 147
Appendicitis 144
Gingivitis 166
Pelvic inflammatory infection 123
Peritonitis 150
Vaginal discharge 123, 195
Miconazole cream 176
Microbes (germs) 85
Migraine 164
Missearriage 140–1
Inevitable 194
Threatened 194
Morning-after pill 195
Morning sickness 193
Morphine 20, 22
Anxiety relief 205
Backache 168
Biliary colic 145
Bleeding peptic ulcers 151
Contraindications
Chest injury 24, 38, 40
Head injury 24, 77
Coronary thrombosis 129
Crush Injuries, hand 30
Eye, chemical contact 47
Fractures 27
Galstone colic 145
Internal bleeding 22
Internal injuries 74
Pelvis fracture 36
Perforated ulcer 152
Renal colic 155
Retention of urine 156
Shoulder dislocation 84
Strangled hernia 148
Thigh bone shaft fracture 30
Vaginal bleeding 194
Mouth
Caries 36
Injuries 81–2
Ulcers 160
Mumps 109, 118
Complications 153
Muscular rheumatism 130–1, 136, 168
Nail bed inflammation 174
Nail fold infections 190
Neck injuries 35
Neil Robertson stretcher 33, 42–4
Neomycin 191–2
Neuropathy 159
Nervous system 219
Nettle rash 178, 181
Nematode 159
Nitrazepam 46
Non-freezing cold injury 203
Nose bleeding 132
Nose injuries
Foreign bodies 81
Inside 81
Nurses 51
Nursing
Care of the injured 52
General 51–2
Oedema
Caused by heart disease 187
Generalised 187
Localised 187
Oesophagus 218
Oil, contamination with 204
Onchocerciasis (river blindness) 95
Orchitis 109
Osteo-arthritis 170
Otitis media 161–3
Overdoses 46–7
Oxygen
Coronary thrombosis 129
Haemoglobin carrying capacity 217
 Peripheral diffusion 136
Pneumothorax 137
Requirements, head injury 37
Suffocation 18
Oxyhaemoglobin 217
Palmar space infection 190
Panda eyes 75
Paracetamol
Abscesses 173
Anal fissure 143
Boils 162, 173
Bronchitis 135
Carpel tunnel 173
Cellulitis 99
Chest wall 136
Common cold 182
Dengue fever 101
Fibrositis 169–70
Glandular fever 103
Hangover 180
Head injuries 77
Influenza 104
Measles 107
Minor abdominal conditions 137
Mumps 181
Overdose 47
Painful periods 193
Plexus 136
INDEX

231

Paradoxical chest movements 39
Paraffin gauze dressing 24, 83, 174
Paralysis
Aids for 57
Effects on limbs 57
Patient supported in bed 57
Signs 75
Paraphimosis 153
Paraplegia 160
Paronychia 174
Paroxysmal tachycardia 129
Pediculosis 177
Pelvic inflammatory disease 123, 124
Pelvis fracture(s) 36
Penetrating wound, chest 220
Penicillin
Abscesses 173
Allergy 181
Anthrax 98
Appendicitis 144
Boils 173
Carbuncles 173
Cellulitis 99, 173
Genital ulcers 119
Lymphadenitis 186
Meningitis 108
Otitis media 162
Perforated ulcer 152
Peritonitis 138–9, 142, 150
Pneumonia
Anthrax 98
Bacteria caused 95
Influenza 104
Inhaled poisons 46
Lobar 136–7
Measles 107
Pulse rate: respiration rate 54
Sputum examination 60
Pneumothorax 130–1, 137
Pneumovitis 110, 114
Port health clearance 93
Post-herpetic neuralgia 160
Post-mortem examination 207
Posthitis 117–18
Potable water 85–9
Potassium permanganate 175–6
Pre-menstrual tension 193
Pregnancy
Bleeding 194
Pressure sores 57
Prickly heat 177
Prions 95
Prochlorperasine 188
Proctitis 125
Promethazine 188
Proctosis 128
Prognosis 140–1
Protozoa 95
Pubic lice 117, 123–4
Pulmonary oedema 46
Pulp infection 173–4, 190
Pulse rate
Chart 55
Normal 54
Pupil response 75
Quinsy 167–8
Rabies 95, 111, 170
Red cells 216
Rheumatic fever 169
Rheumatism
Acute 169
Chronic 170
Muscular 169–70
Rib fractures 38, 130–1, 136
Rice water motion 59
Ring pad 11
Ringworm 85, 95, 176
Roundworms 153
Rubella 103
Sabutamol inhaler 134
Salpingitis 123, 140–1, 146
Salt water boils 191
Scabies 117, 124, 178
Scalds
Burns 17
Scalp lacerations 77
Scars 77
Scalp lacerations 77
Scalp lacerations 77
Scalp lacerations 77
Scalphes 172
Scrotum swelling 118, 154–5
Sea sickness 172
Sepsis 107–8
Sexually transmitted disease 117–26
Instructions
Medical attendants 125
Patients 125–6
Prevention 126
Treatment centre at ports 125
Vaginal discharge 194–5
Shingles 130–1, 136, 178
Ship-to-ship transfer 213
Shock
Abdominal wounds 24
Causes 19
Signs 19
Symptoms 19
Treatment 20
Shoulder
Blade fracture 28
Dislocation 84
Fractures 28
Sick quarters 51
Snakes 165
Frontal 165
Masillary 165
Skeletal 220–1
Skin 219
Chemical contact 47
Skull fractures 75–6
Sleeping tablets, overdose 46
Slinig 12–13, 28
Slipped disk 94
Snake bites 170–1
Sodium bicarbonate, stings 172
Sodium chloride
Acute gastroenteritis 146
Bacillary dysentery 146
Sodium hypochlorite solution 48, 87
Solvents 48
Sore throat 167
Spencer Wells forceps 70–2
Spiders 172

INDEX

231
Spinal cord 219
Injury 160
Spine fractures 33-5
Splints 13-14
Inflatable 14
Sprains 84
Sputum, examination 60
Stab wounds 25–6
Abdomen 26
Chest 25
Limbs 26
Sterilisation 69, 91
Steristrips 70–1
Stings 171–2
Stomach ulcer 150–1
Stove-in chest injury 38–9
Sprains 84
Strains 84
Strangulated hernia 140–1
Strangulation 18
Stroke 64, 132, 160
Headache 164
Styes 163
Suffocation 18, 134
Carbon dioxide 48
Suicide, potential 159
Sunburn 83, 94
Surgeon’s knot 72–3
Survivors 201–4
Sutures 72
Swallowed poisons 46–7
Sweat see also Perspiration 219
Swollen legs 204
Sycosis barbae 174
Sympathetic nervous system 219
Syphilis 85, 117, 120–1
Tapeworm 95
Tenaesmapr 46
Temperature
Chart 55
During cold water emersion 201
High
Delirium tremens 180
Malaria 106
Treatment 185
Typhoid 102
Typhus fever 114
Ulcers 150–2
Umbilical cord, tie and cut 199
Unconscious patient
Chest injuries 39
Choking 18
General management 65
Head injury, care of 75
Moving 44
3 MUSTS 63
Treatment 15–16
Unconsciousness, diagnosis 64
Upper arm fractures 28
Upper eyelid eversion 79
Urethra 219
Urine 219
Bowel and bladder 186
Blood-stained 36
Examination 143
Renal failure 156–8
Testing 59–60
Glucose 173, 195
Uric acid 207
Urticaria 178, 181
Vaginal bleeding 196
Vaginal candidiasis 122
Vaginal discharge 122–3, 123, 194–5
Valli 46
Varicella 95, 97, 99
Vasculitis 133
Varicose veins 132
Vein 216
Vomiting 70–3
Whooping cough 114
Wind 137
Worms 59, 152–3
Wounds
Abdominal 24
Bullet 23
Cheek 24
Classification 69
Face and jaw 25
Head 24
Healing 70
Infection 73
Metal fragments 23
Nose 25
Stitches, removal of 73
Tonsils 124
Treatment 70–3
Wrist fractures 28
Yellow fever 85, 115
Zinc oxide
Ointment 143, 175
Powder 166

Index by Dr Olivera Potparic