This document provides a summary of the data sources used to produce statistics on reported road casualties and accidents. It also includes information about the other statistics included in the RRCGB annual report on drink driving, hospital admissions data and valuation of accidents and casualties.

The document is based on the Road Casualties Statistics Quality Report published by the Welsh Government. The original is available at wales.gov.uk/topics/statistics/publications/transquality/?lang=en.

What statistics are included in Reported Road Casualties Great Britain?

The majority of the statistics in the RRCGB reports are from road traffic accidents in which at least one person was injured and which were reported to the police. The accident had to involve at least one vehicle. This includes pedal cycles and ridden horses. The accident did not have to include any motor vehicles – for instance, an accident involving a pedal cyclist falling off their bicycle on the road would be included, even if no other vehicle or pedestrian was involved. The accident also had to take place on the public highway; so accidents in car parks, on private driveways and off-road are not included. Accidents which do not result in a personal injury (i.e. ‘damage-only’ accidents) are not included.

The current system for collecting data about road accidents and casualties dates back to 1979. The Department for Transport holds detailed records about road accidents in a database since that year. A number of RRCGB tables include a time series back to 1979. Earlier data are available because the post-second World War data collection system was set up by a Home Office Circular dating from 1948, and before that, figures were collected from the First World War onwards. The post war figures have always been based on police reported data.
Data are collected by the police using a data definition which is called ‘Stats19’. Police forces pass the Stats19 data onto the Department for Transport (for English forces), Welsh Government and Scottish Government. The Police Service for Northern Ireland performs a similar role there.

As long as all drivers exchange details, there is no legal obligation to report a road traffic collision even if someone is injured. This leads to the problem of underreporting of personal-injury accidents. There is more detail on this later in the document.

Key definitions used

Stats19 data: The core set of statistical data which the police have agreed to provide about personal-injury road traffic accidents.

MG NSRF (used for the collection of Stats19 data): The standard form produced by the police in England to collect Stats19 data. A copy is provided in Annex A. Police forces are free to use whatever form and technology they choose and have no obligation to use the standard form. In practice, most English forces either use the precise form provided here or a minor variation. A few forces use their own form. The Welsh and Scottish Governments each produce their own version of the Stats19 form. All forces are able to collect any additional data they choose, based on local requirements.

Accident: Involves personal injury occurring on the public highway (including footways) in which at least one road vehicle or a vehicle in collision with a pedestrian is involved and which becomes known to the police within 30 days of its occurrence. Damage-only accidents, with no human casualties or accidents on private roads or car parks are not included. The data are collected by police at the scene of an accident or in some cases reported by a member of the public at a police station. The Department for Transport does not receive details of such accidents, and cannot give any figures for them.

Each accident is classified according to the severity of the injury to the most seriously injured person involved in the accident. An injured casualty is coded as killed or as seriously or slightly injured by the police on the basis of information available within a short time of the accident. Generally this will not include the results of a medical examination, but may include the fact of being detained in hospital, the reasons for which may vary from area to area. In deciding on the severity of a casualty:

Casualty: A person killed or injured in an accident. Casualties are sub-divided into killed, seriously injured and slightly injured.

Fatal accident: An accident in which at least one person is killed; other casualties (if any) may have serious or slightly injuries.

Killed: Human casualties who sustained injuries which caused death less than 30 days (before 1954, about two months) after the accident. Confirmed suicides are excluded.

Serious accident: One in which at least one person is seriously injured but no person (other
than a confirmed suicide) is killed.

Serious injury: An injury for which a person is detained in hospital as an “in-patient”, or any of the following injuries whether or not they are detained in hospital: fractures, concussion, internal injuries, crushings, burns (excluding friction burns), severe cuts, severe general shock requiring medical treatment and injuries causing death 30 or more days after the accident. An injured casualty is recorded as seriously or slightly injured by the police on the basis of information available within a short time of the accident. This generally will not reflect the results of a medical examination, but may be influenced according to whether the casualty is hospitalised or not. Hospitalisation procedures will vary regionally.

Slight accident: One in which at least one person is slightly injured but no person is killed or seriously injured.

Slight injury: An injury of a minor character such as a sprain (including neck whiplash injury), bruise or cut which are not judged to be severe, or slight shock requiring roadside attention. This definition includes injuries not requiring medical treatment.

Data processing of road accident and casualty data

Data collection

In summary, every personal injury road traffic collision that is reported to the police is recorded in an administrative system that includes an element of statistical reporting. This statistical reporting is done in an identical way across Great Britain using the Stats19 variables. The variables are usually captured in the MG NSRF form or a locally defined form (which contains the core Stats19 variables) by the police officer attending the accident. Alternatively, in around a third of cases, it is reported by members of the public at a police stations some time after the accident; this is for instances when a police officer has not attended the personal injury accident.

The purpose of the Stats19 variables are to provide detailed information about the accident itself, about the attendant circumstances, the vehicles involved and the resulting casualties. The data are validated through various processes (which take place within police forces, local highway authorities and national governments) and then forwarded to the Department for Transport for national statistical purposes. The data are also passed to the local highway authorities that have statutory responsibilities to promote road safety.

The information collected as part of Stats19 is revised every five years. The latest version of the form was introduced form the beginning of 2011. It was introduced following a review carried out in 2009. The link below provides a copy of the current form, together with the Stats20 document that provides detailed guidance for completing this form. It also covers the review process described above.

The Stats19 form is really a series of forms:
• An accident record form setting out the attendant circumstances associated with this accident. These include, for example: The road class, type, number and speed limit; light, weather and road surface conditions; presence or otherwise of junctions and pedestrian crossing facilities; date, time and location (by grid reference) of the accident.

• A vehicle record: a separate form is completed for each of the vehicles involved in the accident setting out details about the vehicle; its movements before and in the course of the accident; some information about the driver (their age, sex, journey purpose, home postcode) and whether or not it was a hit and run accident.

• A casualty record: again with a separate form completed for each of the casualties resulting from the accident. This sets out the age and sex of the casualty and the severity of their injuries (fatal, serious or slight); details about the location and movements of any pedestrian casualties; and the casualty class, that is whether they were a driver/rider, vehicle passenger (including car and bus passengers recorded separately), or a pedestrian.

• A contributory factors form. One of these forms is completed for each accident; the form sets out a grid of 76 factors that may contribute to an accident; and the police officer can list up to six of these factors that he or she considers to be relevant to the accident. Each of these factors is linked to one of the participants (either to a vehicle or a casualty, where there will also be an associated vehicle or casualty record; or to an ‘uninjured pedestrian’, where there will not be any further information). The police officer also indicates whether the factor was ‘very likely’ to have contributed to the accident or only have a ‘possible’ link to the accident. More than one factor can be linked to a single road user, and the same factor can be linked to a series of road users.

Some of the fields on the form are completed with a numerical code (for example ‘road type’ is 1=roundabout, 2=one way street and so on). Other fields are filled with numerical data, such as ages of drivers and casualties, the number of vehicles involved and so on; or alphanumeric data, for example like the vehicle registration marks (number plates) of the vehicles involved and the postcodes of drivers and casualties. In order to match up the different parts of the Stats19 form, all the parts of each forms have a single accident reference number; each vehicle and casualty involved also has a reference number, so that casualties that are drivers of, or passengers in, a vehicle can be linked to their vehicle, and so that the contributory factors section can refer to the relevant vehicles or pedestrians.

The Stats19 form is part of a larger administrative form that is completed by the police officer for each accident. This larger form contains additional fields about the accident that are relevant to the decision whether or not the police will prosecute any of the people involved. It also contains the police officer’s description of both the circumstances of the accident itself, and a description of the location of the accident.

At the moment, the Stats19 form is either a series of paper forms which are completed by the police officer and then keyed in by back office staff in the police force, or they are completed directly onto a digital version of the form. Police forces throughout Great Britain
have started to move towards capturing these data through hand held or other digital devices.

Mode of data collection

As described above, the Stats19 data are a set of numeric and alphabetic data. These data are collected by each police force in Great Britain. However, practices vary in how these data are inputted onto computer systems and validated. Some police forces key the information into their own databases as part of back-office procedures and then carry out validation themselves. Other forces provide the forms to the local highway authority which enters and validates the data.

Following data entry, in some cases the data are supplied directly from the police force to the Department for Transport (for 39 English forces), the Scottish Government (for Police Scotland), and the Welsh Government (for the four Welsh forces). Each government then validates and checks the data, raising any data quality problems directly with the relevant police forces. In all of these cases, the police force also sends data to the relevant local highway authority which also carry out validation and checks on the data.

In other cases police forces send the data directly to the local highway authorities who carry out the majority of the validation tasks and correcting of incorrect data. Once this has been completed, the authority provides the data to their national government. These processes take place on different cycles, ranging from weekly through to quarterly.

The Scottish and Welsh Governments carry out their own validation on the data and supply records to the Department for Transport. A final set of validation checks are run by DfT and anything still outstanding is checked with the data provider.

Validation and verification

As described above, the Stats19 is part of an administrative system which records ‘personal injury accidents and casualties that are reported to the police’. The wider quality issues relating to this are discussed below in the Quality section. But this means that these Stats19 data do not contain ‘statistical’ errors as, in principle, they cover this entire category of traffic accidents (which is a sub-set of all traffic accidents, or collisions, however these are defined). Instead, the errors arise from:

- Individual police officers failing to complete Stats19 forms;
- Individual police officers misreporting the details they write onto the form, or
- Other errors made by police forces and local authorities in the processing of the data, including deleting or otherwise failing to report accident records to the relevant governments.

There are a number of layers in the validation process aimed to minimise these errors. Police forces have internal checking processes designed to ensure that police officers complete this form. They also can use in-house checking of the quality of the data on the forms. Many police forces use local authorities to check details of accidents, particularly the information about the location of accidents.
The validation and verification procedures carried out by the Department for Transport on data are:

- Ensuring that police and local authorities send figures, on time.
- Ensuring that the forms are fully completed.
- Ensuring that each accident is allocated to the correct local authority area by checking that the grid reference falls within the rectangle defined by the most North/South and East/West boundaries of the authority concerned.
- Checking that duplicate records have not been sent through.
- Checking that the Department holds the same number of accident and casualty records as the contributors for any given time period.
- Running a standard set of validation checks. These checks are run on each accident record. If a record fails validation, then a report is generated which is sent back to the data provider so that they can correct the record.
- Dealing with other database management tasks in order to ensure a clean dataset, including inserting fillers for incomplete data and ensuring consistency by eliminating orphan records (e.g. casualty records without an associated accident record), or other statistical issues.

The Standing Committee for Road Accident Statistics (SCRAS)

The Standing Committee on Road Accident Statistics (SCRAS) was first set up in 1977 to oversee the new STATS19 process for road accident data collection. It was given the following terms of reference:

- to consider problems arising in the collection of data on road accidents and make recommendations
- to disseminate information on techniques and procedures developed in connection with the system of accident reporting
- to consider any amendments to the system that may be required and make recommendations at the time of the five year review.

It has continued to steer the process of accident data collection since then – particularly dealing with the reviews of Stats19 carried out every five years. The membership of the committee is drawn from a wide range of bodies and includes representatives of central government, local government and the police. The committee is chaired by DfT. The current membership of SCRAS is made up from:

- Road Safety Statistics, Department for Transport
- Road Safety Policy, Department for Transport
- Social Research and Evaluation, Department for Transport
- Highways Agency
- Transport Statistics, Welsh Government
- Transport Statistics, Scottish Government
- Department for Regional Development, Northern Ireland
- Home Office
• Association of Chief Police Officers (ACPO)
• Police Scotland
• Police Service of Northern Ireland
• Transport for London
• Scottish local authority representative (currently Falkirk Council)
• Welsh local authority representative (currently Gwent Council)
• English local authority representative (currently South Yorkshire LTPP)
• Association of Directors of Environment, Economy, Planning and Transport (ADEPT, formerly the County Surveyors’ Society)

Although the next review is due there are no plans to carry it out immediately. The 2011 changes are being implemented by police forces through 2011 to 2014 and therefore there have not yet been much data from the new variables to base the review on. Furthermore, the Collisions Reporting and Sharing project (CRASH), which provides a common platform for the recording of both statistical and police/investigation data on road traffic accidents, could bring some changes to data collection. CRASH is currently (as at September 2013) in pilot and a decision will be made later in 2013 about the rollout of CRASH to other forces. The next review, therefore, will take place following that decision plus some time for the rollout to take place.

In the meantime, SCRAS have initiated a review of the contributory factor data. This will be undertaken in late 2013 and early 2014. The outcome of the review will be published on the DfT website.

Other statistical issues

Standards

National Statistics are produced to high professional standards set out in the Code of Practice for Official Statistics. They undergo regular quality assurance reviews to ensure that they meet customer needs. They are produced free from any political interference. These statistics have been assessed by the UK Statistics Authority twice. The first assessment took place in 2009 and the statistics were confirmed as National Statistics later that year. The report (report number 4) and letter are available at http://www.statisticsauthority.gov.uk/assessment/assessment/assessment-reports/index.html. The statistics were assessed again during 2013 (report number 258, available at the URL above). They were again designated as National Statistics subject to six requirements. The Department will respond to the assessment report in October 2013 explaining what has been done to meet the requirements.

Disclosure and confidentiality

The report of the details of a traffic accident and the resulting casualties (and the nature of these casualties) is a report of a public event. For example it may be reported in the press, or on radio or television. So there are no confidentiality issues posed by reporting about an individual accident and its attendant circumstances, together with details of the vehicles and
casualties involved. This means that there is not need to impose any disclosure control to the publication of most of the statistical information about the accident.

Confidentiality protection is relevant to a few potentially personally disclosive data items on the Stats19 form. These items cover information about people involved in the accident which are considered to be confidential and relate to:

- postcodes of the addresses of drivers
- postcodes of addresses of casualties
- the registration numbers of vehicles involved in accidents
- the contributory factors for the accident (as they can imply blame and be *sub judice* to any investigation and/or prosecution)
- breathalyser tests and results

These pieces of information from the Stats19 form are not released outside police forces, some local highway authorities and the statistical sections of the Welsh and Scottish Governments and the Department for Transport. The Transport Statistics section in the three government organisations use the postcode data for statistical analysis to investigate the links between accidents and casualties and deprived areas. The DfT links the vehicle registration data with DVLA records in order to analyse accidents and casualties by the make and model of the vehicles involved.

All Stats19 data are held in a secure database. The database is only accessible to members of the Road Safety Statistics team in DfT. Raw data, excluding the sensitive variables outlined above, are made available at http://data.gov.uk/dataset/road-accidents-safety-data. Researchers working within universities and suitable research institutions can apply to get access to the sensitive variables under an end user licence.

The contributory factor data offer a particular challenge with regards to the balance between confidentiality and access. Contributory factor data are unlike everything else in Stats19 in that they are based purely on the police officer’s judgement when they first arrive at the scene of the accident. It is possible, therefore, for the officer’s judgement to be incorrect – either because something was not obvious at the time (such as the driver using a mobile phone, or a hidden vehicle defect) or to be demonstrated as such following a more detailed investigation. More importantly, though, contributory factors can imply blame and responsibility for the accident. If the factors can be matched with specific accidents (and specific drivers, vehicles and/or casualties) they may be *sub judice* to a prosecution, or may lead to individuals or media reports laying accusations at participants in the accident.

We have published some research looking at appropriate release practices for contributory factors as carried out by the Methodology Advisory Unit at the Office for National Statistics. This is available on the technical notes page. It outlines the main risks for identifying contributory factors with individuals and what action we need to take to minimise this risk. In practice, the main change this has brought about is allowing us to release a table containing the total number of contributory factors by local authority. This table was published for the first time in 2013.
Other information collected by the police in relation to the accident is just one part of the plethora of personal information they collect in the course of their activities. The confidentiality issues in respect of the Stats19 form fits into their general processes for dealing with personal data.

Response burden

The Stats19 form is part of a wider administrative process that is carried out by police forces in respect of personal injury road accidents that come to their attention. It is, therefore a little difficult to establish the response burden that relates solely to the completion of the Stats19. The latest estimate is that the response burden amounts to around £2.6 million covering the time individual police officers spend completing the form, the back office work in compiling the data, work across local authorities in checking the location of accidents, and finally the checking of records by police and local authorities of accidents and casualties which fail the various validation checks carried out. This figure is for Great Britain as a whole.

Dissemination

The Stats19 data are administrative rather than statistical data. So all figures that are collected are (with the few exceptions for reasons of disclosure) available to be released after the quality checking process described above. The Stats19 form collects a very large amount of data, as each accident has:

- An accident record with 26 fields of data
- One or more vehicle records, each with 22 fields of data
- One of more casualty records, each with 14 fields of data
- A contributory factors record, with up to 6 contributory factors.

It is impossible to disseminate more than a small fraction of the available data in an aggregated format, particularly as it also has a geographical element as well. The approach taken is the release a large number of standard tables as part of the RRCGB publications and by releasing the raw data. DfT also produce ad-hoc tables and statistics on demand, and respond to around 500 data requests and enquires a year. The statistics are also used to respond to around 70 parliamentary questions each year.

Underreporting of road casualties

Issue

The accidents and casualties data are based on personal-injury accidents that are reported to the police. These data are incomplete as some personal-injury accidents are not reported to the police; or are reported to the police but the details of the accident and casualties are not recorded accurately, or indeed not recorded at all.

Sources of underreporting and under-recording of road accidents and casualties

- Not all road accidents are ‘reportable’: for example, if no injury occurs (called a damage-only accident) or the accident takes place on private land away from the
There is no legal obligation for drivers to report road accidents to the police, provided the parties concerned exchange personal details at the scene. The requirements to stop, provide information and report a road traffic accident are set out in the Road Traffic Act 1988 (section 170), as amended by the Road Traffic Act 1991 (Schedule 4);

Some accidents that should be reported by drivers to the police are not reported. This may be because the driver is ignorant of the legal requirements or is reluctant to do so, for example, if the driver has been drinking or is uninsured;

The police do not record all accidents reported to them;

It is often difficult for a police officer to judge whether a casualty should be classified as having a serious or slight injury. For example, the full severity of the injury may not be apparent until some time after the collision when the police officer is no longer present. Research has found that the police tend to underestimate the severity of the injury.

This is a potentially serious issue concerning the quality of the road casualty data. If this underreporting is unrecognised, then the true magnitude of road safety problems are unknown or could be underestimated. This could in turn lead to incorrect prioritising of policy measures to improve road safety, or could lead to less efficient or inappropriate countermeasures. The impact could be:

That under reporting is greater for certain types of accident and casualty; and this would lead to a lack of priority for dealing with the relatively under-reported types. For example comparison of Stats19 data with hospital admissions data (for England) shows that the Stats19 relatively under represents serious injury casualties from cyclist accidents, particularly if no other vehicle is involved.

If the degree of under-reporting changes over time, then the Stats19 data will not be a representative measure of progress towards meeting road safety casualty reduction targets. It has been argued that the divergence (in England) between falling levels of serious casualties from the Stats19 data as compared with level of rising hospital admissions for road casualties suggests that the relative extent of underreporting in the Stats19 data is increasing over time.

The first point to note is that this is a long standing issue which affects the road casualty figures throughout Great Britain. It is also a problem internationally as most countries’ road casualty data are based on police reports and so are affected by these issues (for discussion see Derriks and Mak, 2007); this is particularly important as globally, road traffic fatalities are consistently amongst the top three causes of death for people aged between 5 and 44 years old, with a global total of 1.3 million deaths in 2004 and between 20 to 50 million traffic injuries (see WHO, 2009).

In Great Britain, this issue has been raised in a number of policy and statistical contexts, and these discussions are summarised in the UK Statistics Authority Assessment Report of road casualty statistics produced by the DfT (UKSA, 2009). Examples of occasions where this issue has been raised include the 2006 National Statistics Quality Review of Road Accident...
Statistics (DfT, 2006a) or the House of Commons Transport Committee October 2008 report (TSC, 2008) that expressed concern about the quality of the Stats19 data.

DfT Response

The Department for Transport has carried out a considerable amount of research (e.g. DfT, 2006b) into this topic over a number of years. The current position is, however, determined by the requirements set out in the UK Statistics Authority assessment of road casualty statistics referred to above. The relevant requirements are set out in section 2.4 of their report:

- Requirement 1: Develop a best approximation of the numbers of casualties based on research into the undercounting associated with the Stats19 form. These estimates should then be included in the published counts to inform the use of the scale of the problem.
- Requirement 3: Bring together as much relevant data as possible – including sources that are not currently exploited – at the time the statistics are released in order to help explain the weaknesses in the Stats19 data, and the implications of these.

In response to these requirements, DfT introduced questions in the National Travel Survey (NTS) asking about whether respondents have been involved in a road traffic accident in which someone was injured in the last three years and last 12 months. These responses are used to estimate the total number of personal-injury casualties each year including those that were not reported to the police.

This estimate was published for the first time in the 2008 annual report (http://tinyurl.com/rrcgb2008) and was updated in both the 2009 (http://tinyurl.com/rrcgb2009) and 2010 (http://tinyurl.com/rrcgb2010) annual reports. Due to the timing of re-tendering the NTS and availability of data, the figures were not updated in 2011, but have been done so for 2012.

The geographic coverage of the NTS has changed from Great Britain to England only in 2013. This means that no information on the number of accidents NTS participants have had for residents in Scotland or Wales will be available in the future. We intend to deal with this by looking at the relationship between responses in Scotland and Wales in comparison with England over recent years and then assume that this relationship holds true for future years. More information will be made available in the 2013 annual report.

The 2012 estimate is that there were between 630 thousand to 790 thousand personal-injury casualties a year in Great Britain, with a central estimate of 710 thousand.

Additional information about unreported road casualties can be found in the articles and tables on hospital admissions in the annual reports of 2008 to 2011. These will be updated with 2012 figures later in 2013.
Quality

The sections below set out how, and to what degree, road traffic personal-injury accidents and casualties in Great Britain reported to the police adhere to a quality strategy as listed in Principle 4 of the National Statistics Code of Practice; that is the six dimensions of statistical quality of the European Statistical System.

The six dimensions are listed below, together with an assessment for road casualty statistics. This section is followed by a further quality section which looks, in more depth, at the issue of whether or not the Stats19 data undercounts the ‘true’ level of road casualties; and the implication of this situation for users of these statistics.

Relevance

The degree to which the statistical product meets user needs for both coverage and content.

The statistical products based on the Stats19 data include an overview bulletin which reports on and then analyses accidents and casualties as a whole and a series of reports providing further detail about accidents and casualties associated with high-risk road users and vulnerable road users. There are also a large set of Excel tables with more detailed tables for individual local authority areas. These outputs meet most needs for data from both official and non-official users of data. In addition, the DfT provides an on-demand service through our generic e-mail address (roadacc.stats@dft.gsi.gov.uk) for answering requests for data that are not covered by the published statistics (for example a request for details about accidents along a particular stretch of road).

These outputs currently meet user requirements. We know this firstly because we get direct feedback from users through our generic e-mail address. Secondly, we get direct feedback about our statistical products from people and organisations involved in road safety policy and delivery in Great Britain (for example road safety policy teams within DfT, Police and Fire Services, local authorities, Camera Partnerships, RoSPA). Road accidents and casualty data are an integral part in all these aspects of road safety policy and delivery.

Finally, and thirdly, we have a number of other ways to consult with users; these include the Transport Statistics Users Group, which includes many non-governmental users and the Standing Committee for Road Accident Statistics (SCRAS). The Department is also an active member of international bodies, such as Scotland’s Liaison Group for Road Accident Statistics (LGRAS), the European Commission’s CARE group, and OECD’s IRTAD group. All of these groups make use of the data and statistics we produce and provide feedback on how our outputs meet, or fail to meet, their requirements.

The articles included in the annual report each year vary slightly. Our aim is to include additional analyses, especially around issues that are topical and relevant to the time. For instance, the 2012 report included sections on weather and young car drivers. These were driven by the fact that there have been a number of extreme (or abnormal) weather events since 2010 which were affecting the casualty figures and which had been highlighted in the quarterly bulletins and main results. Similarly, young car drivers were a topic that was
receiving considerable coverage in the media and DfT was due to publish a green paper on it. Therefore it was felt that these topics were suitable for inclusion that year. We welcome thoughts and ideas from users over what topics should be addressed in the future.

Accuracy

The closeness between an estimated result and the (unknown) true value.

The concept of statistical accuracy can be broken down into sampling and non-sampling error. Non-sampling error includes areas such as coverage error, non-response error, measurement error and processing error.

The accidents and casualties data are based on personal injury accidents that are reported to the police. The Stats19 figures, in principle, have complete coverage of these accidents so there is by definition, no sampling error in the figures. There are issues of accuracy, or rather incompleteness, to the degree that:

- Accidents and casualties are reported to the police but are not recorded on the Stats19 form; or are
- Reported to the police but the details of the accident and casualties are not recorded accurately; or
- Personal injury accidents are not reported to the police.

These issues of accuracy are linked to the issue about the definition and recording of personal injury; in other words what is, or should be, the circumstances when someone involved in a traffic collision has suffered a ‘personal injury’. For example the Stats19 definition of an accident will include single-vehicle pedal cycle accidents, if the rider (or a pedestrian in collision with the cycle) is injured. In practice, only a small proportion of these types of accident are reported to the police.

An additional problem is the challenge for police officers in classifying casualties correctly into the ‘slight’ and ‘serious’ categories. Whilst it is clear which category many injuries should be classified (a fatality is very simple to classify, for instance), there are a wide number of injuries which might require hospitalisation yet this fact is not obvious at the roadside. Although officers rely on experience and, where possible, input from paramedics, it is inevitable that they will get this wrong sometimes.

These are serious issues concerning the quality of the road casualty data. If this type of under-reporting (or mis-reporting) remains unrecognised, then the true magnitude of any road safety problems cannot known, or could be underestimated. This could in turn lead to incorrect prioritising of policy measures to improve road safety, or could lead to less efficient or inappropriate countermeasures. These issues also affect the ‘coherence’ strand of quality.

Although the main results and annual report publications include all accidents for the whole year, the quarterly bulletins may be based on a subset of forces. For a number of reasons, not all forces are always able to provide complete returns in time for the quarterly bulletins, therefore estimates are made for the missing forces. The back series of quarterly data are revised at each publication point which ensures that new data are always included later on.
The final figures for the year always include full returns from all police forces.

Timeliness and punctuality

Timeliness refers to the lapse of time between the publication and the period to which the data refer. Punctuality refers to the time lag between the actual and planned dates of publication.

Punctuality is a minor issue as all outputs adhere to the Code of Practice by pre-announcing the date of publication through the Department for Transport *Forthcoming publications* page. They are also available from the National Statistics Publication Hub.

In terms of timeliness, we publish the First Releases about road casualties as soon as is practical after the relevant quarterly or annual time period. This is usually four months after the end of the first three quarters of the year, and six months after the end of the year for the whole year figures. Ideally this time would be shorter, but it is dictated by the large number of police forces and local authorities in Great Britain, plus a small amount of validation, processing and production time within DfT.

More detailed analysis of road casualty data is presented in the annual report, which is published almost ten months after the end of the year.

In addition, there is a publication of estimates of the number of casualties in accidents where the driver is over the drink drive limit each August. This release contains final figures from two years earlier and provisional results from the previous year (e.g. the release in August 2013 contained final data for 2011 and provisional data for 2012). It takes much longer to finalise these figures as they are based on returns from coroners and procurators fiscal. Collecting these data and matching them to the Stats19 data is more time consuming than just preparing the Stats19 data.

Accessibility and clarity

Accessibility is the ease with which users are able to access the data, also reflecting the format(s) in which the data are available and the availability of supporting information. Clarity refers to the quality and sufficiency of the metadata, illustrations and accompanying advice.

The road casualty statistics are published in an accessible, orderly, pre-announced manner on the DfT’s website at 9.30 am on the day of publication. Simultaneously the releases are also published on the National Statistics Publication Hub. All releases are available to download for free. More detailed data are also on spreadsheets for use offline.

We also make most raw data available to users on data.gov.uk. This allows users to create their own analyses and confirm that we have used the correct figures in our published statistics.

We aim to use plain English in our outputs. We include both an email address and direct line telephone number on all outputs. This means that anyone with a query on the statistics can contact the road safety statistics team quickly and easily. We aim to respond to all enquiries within 20 working days, though in practice we usually respond within two to four days.
Comparability

The degree to which data can be agreed over both time and space.

The Stats19 variables and definitions are commonly used across England, Scotland, Wales and Northern Ireland (though some of the variables are slightly different or omitted entirely in Northern Ireland). All of these data are collected from the same source and are, therefore aligned in terms of the definitions and coverage of the data. In addition the data are given a similar set of validation checks to ensure the internal consistency of the data provided in various sections of the Stats19 form.

There is one difference between the statistics DfT produce and the statistics produced by the Welsh and Scottish Governments. Whilst we close down our database for the year at the point of producing the main results release, Scotland and Wales continue to accept changes. This means that although all the figures tally at first, over time the figures for Scotland and Wales in the publications produced by the devolved governments diverge from DfT’s figures. The reason for this difference is in the volume of data. The number of accidents in Scotland and Wales are much smaller than the whole of Great Britain (or even England), therefore whilst it is possible for the Scottish and Welsh Governments to continue to update their databases, this is impractical for DfT.

To deal with this, DfT’s sub-national tables (and especially LA level tables) often focus on England, allowing users to pick up more up-to-date data from the devolved administrations’ own websites.

The changes to the Stats19 form take place every five years and are controlled by the Standing Committee of Road Accident Statistics. One of the parameters in deciding on changes to the form is the need to retain long-term consistence in the main statistical series. DfT holds a database with comparable data going back to 1979. The main categories, such as total casualties or total accidents are comparable with data from before that date.

Some comparisons can be made internationally, as most countries record road traffic accidents, usually based on police accident reports (Great Britain). Figures for fatalities in different countries are broadly comparable; and this is the basis of the usual international comparisons. There are considerable differences in the way different countries treat road traffic-related injuries. So while figures are available for injuries internationally as well, these are not used for comparison purposes.

Coherence

The degree to which data that are derived from different sources or methods, but which refer to the same phenomenon, are similar.

Other sources of data relevant to road traffic accidents and casualties for Great Britain and England include:

- Death registrations data
- Hospital Episode Statistics (hospital admissions), and HES data linked to Stats19
data

- National Travel Survey questions on road accidents and casualties
- British Crime Survey data on road accidents and casualties.

The Stats19 data remain the single most useful source of data on road accidents and resulting casualties in Great Britain. In particular, it is the only source to provide detailed information on accident circumstances, vehicles involved and resulting casualties. However, as has long been known, Stats19 is not a complete record of all injury accidents and resulting casualties, and this can lead to discrepancies with the other sources of data listed above. Although Stats19 does not provide complete coverage of road accidents and casualties, this does not in itself make it unsuitable for monitoring changes over time, assuming that levels of reporting to police have not changed. There is no clear or conclusive evidence of a systematic change in levels of reporting at national level. In addition, most, if not all, road accident fatalities are included in the police data.

Other datasets can be useful both as a check on the quality and completeness of Stats19 and in providing information which is not collected by the police, for example relating to more detailed medical consequences of road accidents. The next section of this note provides more information about these sources, highlighting how they are useful and what weaknesses they have.

Other non-Stats19 data sources and statistics

National Travel Survey data

The National Travel Survey (NTS) is the primary source of data on personal travel patterns in Great Britain. The NTS is an established household survey which has been running continuously since 1988. It is designed to monitor long-term trends in personal travel and to inform the development of policy.

The survey collects information on how, why, when and where people travel as well as factors which affect personal travel such as car availability, driving licence holding and access to key services. Since 2007 the NTS has included questions asking people about their involvement in road accidents. The responses to these questions are used to produce estimates of the total number of casualties in road accidents – for more detail on the methodology used see the Methodology note published at:

It is important to note that these estimates are based on survey data and so it is possible that the data may be prone to errors, which although we do attempt to account for these errors, because of the nature of the sampling methods and sample size of the survey, it is difficult to know the extent to which these errors may affect the figures.

All data from the NTS are based on survey responses and are therefore subject to typical weaknesses involved in surveys: for instance, it is impossible to validate that respondents are giving full and accurate answers (it is very easy for respondents to forget or
misremember things); and the sample size is fairly small (c. 17,000 a year) so might not be representative of the whole population of people who have had road accidents. Furthermore, we make a number of assumptions in the grossing up to total number of casualties. These assumptions are hard to test or check.

Although the NTS has covered the whole of Great Britain in the past, from 2013 onwards the survey only includes people living in England. The methodology will need be changed from 2013. Although we have not yet finalised the new method, it will probably assume that the relationship between Scotland & Wales and England remains the same in the future as it has in the past. The final methodology to be used will be published alongside the 2013 estimates.

Hospital Episode Statistics

The Hospital Episode Statistics (HES) inpatient database is compiled by the Health and Social Care Information Centre and contains data on inpatient admissions to hospitals in England. From the database it is possible to identify inpatients whose injuries have been caused by a road traffic accident, which enables analysis of:

- the extent of under-reporting of personal injury road accidents (i.e. the differences between HES and Stats19)
- more detailed injury severities, beyond the broad “serious” and “slight” classifications in Stats19

Comparison of HES and Stats19 data for recent years show broad agreement in the casualty trends, but there are discrepancies in the absolute numbers of casualties, particularly for cyclists, who may be less likely to report an accident. Data linking between Stats19 and HES has been undertaken for a number of years and achieved a match to around 30 per cent of HES records and 40 per cent of Stats19 serious injuries.

Although HES is a valuable secondary source of data, it has limitations for making direct comparisons with Stats19. For example, HES does not distinguish between “road accidents” that happen on the public highway (which would be included in Stats19) and those that occur elsewhere – e.g. on private land (not covered by Stats19). In addition, the HES data currently used only include casualties who are admitted as inpatients, meaning that casualties who are treated exclusively in Accident and Emergency are excluded. This also means that the HES data is sensitive to changes in hospital admission practice.

Coroner and procurator fiscal data on blood alcohol content of people who died in road traffic accidents

Data on the blood alcohol content (BAC) of people who died in road accidents has been
collected for many years from coroners (in England and Wales) and procurators fiscal (in Scotland) and is used in producing annual estimates of drink drive accidents. The BAC data is matched to Stats19, to estimate the number of drivers or riders who were over the legal alcohol limit for driving when they were killed. The coroners’ data is not complete – typically a match to a known BAC is made for between 60 and 70 per cent of killed drivers and riders in Stats19. The sample is grossed up to estimate the actual number.

As it takes some time for data to be gathered from coroners, provisional estimates are published each year for the previous year using a reduced sample of records (typically 30 to 40 per cent of killed drivers and riders). They are finalised the following year, when a more complete set of returns is available.

In recent years the provisional estimate has been based on a relatively small number of returns, reflecting the overall reduction in drivers and riders killed on the roads. The small sample size increases the uncertainty around the estimate and thus there is scope for a large change when it is finalised. In addition, the pattern of recent revisions to the figures suggests that the provisional sample may be exposed to bias. Given these issues, we will be reviewing the methodology and timing of the provisional estimates over the coming months, with a view to making changes for future data collection cycles.

Valuation of accidents and casualties

Since 1993, the value of prevention of both fatal and non-fatal casualties has been based on a willingness to pay approach. This approach encompasses all aspects of the valuation of casualties, including the human costs, which reflect pain, grief and suffering; the direct economic costs of lost output, and the medical costs associated with road accident injuries.

For more detail on how these costs are calculated please see the Methodology note at: https://www.gov.uk/transport-statistics-notes-and-guidance-road-accident-and-safety

The cost estimates presented in the 2012 annual report are based on road accident data provided by the police covering personal injury accidents that are reported to them under the STATS19 system. This means that any incident not reported to the police is not included in the costing, however using estimates based on NTS data, estimates for the total cost of all accidents, including those not reported to the police, can be produced.

Insurance claims data

Motor insurance companies hold significant amounts of data on all types of road traffic accidents, including both personal-injury and damage-only accidents. The Department is taking an active part in a working group looking at getting access to insurance records. The
aim of the group is use data for a pilot area to see how useful the data could be. In particular, the focus is on:

- Identifying the locations of unreported personal-injury and damage-only accidents to see if there are sites which require local interventions to reduce the accident rate. This will be particularly useful for sites which are rarely, or never, noted in the Stats19 data.
- Improving the Department’s estimate of the total number of casualties.
- Improving the Department’s estimate of the valuation of accidents and casualties as this could be based on real costs.

This work started during 2013 and is expected to take some time. The main challenges are around getting access to the data (insurers treat their data as commercially confident), matching accidents to road locations, and matching the insurance claim record to Stats19 data.

More information on this will be published as the work continues.

Users and uses of road safety statistics

Road accident statistics are a crucial and central resource for national governments in their formulation of road safety policy and monitoring of its implementation. They also make possible a wide range of research relevant to reduction of risk to road users, which is procured by government, funded by independent sponsors, or carried out by organisations or individuals on their own account. More locally, the national road accident statistics enable police forces, local authorities and consultants advising them to relate the information that is collected and analysed in their own areas to national patterns and trends in accident involvement and occurrence of injury, and thus help them in important judgements about the exercise of their local responsibilities for road safety and the enforcement of traffic law.

Central government

In central government, the Department for Transport is responsible for the Government’s road safety strategy as set out in [Strategic framework for road safety](#) and for oversight of progress towards the casualty reduction targets for 2011 and updated in 2012. This requires development of national policies for Ministerial decision, encouragement of the extensive and vital contribution of local authorities, for example through Local Transport Plans, interdepartmental working with the Home Office and the Health and Education Departments, the commissioning and interpretation of research required to underpin future initiatives, and the transparent overall monitoring of progress towards the targets. There are counterpart responsibilities in national government in Scotland and Wales. The two Parliaments and the Welsh Assembly need to be satisfied that Government activity in this socially important and often politically sensitive area is appropriately based upon knowledge, and members of the public expect fully informed responses to queries that they raise. For these purposes, civil servants in all the relevant Departments and researchers and consultants from whom they seek specialist advice need ready access both to extensive regularly and consistently produced tabulations of road accident statistics and to special purpose extraction of detailed
data to address less routine questions that can arise, often at short notice.

This framework, and previous strategies, covered a wider number of commitments: For instance, to evaluate progress with the strategy and towards the targets every three years requires information about trends in all aspects of accident occurrence. To support road safety education in schools and commission further research into child-related road safety issues requires information about children’s accident involvement. To raise standards of goods vehicle and bus and coach driver training and develop schemes for better information and advice for older drivers requires information about the accident involvement of these types of driver. To work with professionals to support guidance on road safety best practice requires information about all aspects of accident occurrence. To progress various aspects of vehicle safety engineering to improve protection to occupants and reduce injury to struck pedestrians and cyclists requires information about the pattern of involvement of vehicles in accidents of different kinds, and to improve public understanding of the risks of road traffic offences requires information about accident occurrence in circumstances likely to arise from the commission of offences. The national road accident statistics are the only comprehensive source of information of these kinds, and where they do not themselves contain information that is required in a particular context, they are often crucial to the design of the research required to obtain the additional information.

Furthermore, in England, the Highways Agency needs continual access to road accident statistics for the trunk roads in the context of its responsibility to manage the network for the benefit of road users of all kinds, and the same applies to the equivalent bodies in Scotland and Wales.

Police forces and local government

Police forces need to target their traffic law enforcement effort and the contributions they make, for example through driver improvement and vehicle rectification schemes as well as in their general relations with the public as road users, to road safety education, training and awareness. Local authorities need to develop policies and programmes for road safety engineering and for education, training and publicity within their Local Transport Plans, and monitor and influence the impact on road safety of other policies for their areas.

In respect of their own areas, police forces and local authorities rely heavily on exactly the data they have collected for those areas as their input to the national road accident statistics. They have also told us that they regard access to the national road accident statistics as important. This assists with placing their local situations in the regional and national context by enabling them to compare local experience with wider trends, thus helping them in formulating policy, monitoring and reporting on progress, and selecting and targeting publicity. Access to data for other police forces and other local authorities enables mutually beneficial comparisons of performance, benchmarking and sharing of experience.

Road safety organisations, researchers and consultancies

Road safety organisations find access to the national road accident statistics crucial in informing their work on policy development and enabling them to base their promotion of
safety measures, their campaigning and their public information work on sound knowledge. Researchers and consultancies need access to the data for many kinds of analysis of the risks and consequences of accident occurrence and for forecasting the potential effects of changes in policy, regulation and the implementation of safety measures. This work is carried out both for government under contract and for sponsors of independent research which is able to refresh and cross-fertilise the thinking of government and local authorities. Consultants also use the data in their work for local authorities in the development and monitoring of road safety programmes, in which they play an indispensable role in the Local Transport Plan process and use the national data to set local indicators in the regional and national contexts.

The organisations which regularly use DfT’s road safety data include TRL (Transport Research Laboratories); Transport Safety Research Centre, Loughborough University; Centre for Transport Studies, University College London; the Parliamentary Advisory Council on Transport Safety (PACTS); and the Royal Society for the Prevention of Accidents (RoSPA).

General

It is known from enquiries received that many members of the general public who are interested in road safety statistics use the websites and some buy the national publications. For example, DfT receives between 100 and 150 enquiries per month asking for data, many of these from students, including school children, working on projects or from people searching for safety advice. Dealing with these enquiries requires data extractions that make use of a very wide range of the items of data covered by STATS19.
References

Derricks, HM and Mak, PM, 2007; *underreporting of road traffic casualties*, Ministry of Transport, Public Works and Water management, The Netherlands, June 2007. Published by the OECD at:
http://www.oecd.org/document/53/0,3746,en_2649_34337_2002165_1_1_1,00.html

DfT, 2006b; *Under-reporting of road casualties: Phase 1. Road Safety Research Report No. 69*

House of Commons Transport Select Committee (TSC), 2008; *Second Special Report Ending the Scandal of Complacency: Road Safety beyond 2010*,
http://www.publications.parliament.uk/pa/cm200809/cmselect/cmtran/422/42202.htm

UK Statistics Authority (UKSA), 2009: *Road Casualty Statistics, Department for Transport, Assessment Report 4*,

World Health Organisation (WHO), 2009; *Global status report on road safety 2009*,
Annex A – user comments and feedback

We welcome feedback and comments from users. The team can be contacted on 020 7944 6595 or roadacc.stats@dft.qsi.gov.uk.

This annex contains a list of comments collected from users recently, and DfT’s responses to the comments. Most, though not all, comments were collected as part of the UK Statistics Authority’s assessment of road safety statistics carried out in 2013.

<table>
<thead>
<tr>
<th>User comment / feedback / experience</th>
<th>DfT response</th>
</tr>
</thead>
</table>
| Stats19 data - underlying data and raw data
Request for additional and wider consultation regarding changes to Stats19 collection and dissemination. | DfT will be carrying out a consultation with all users on a) the timing of the drink drive provisional statistics, and b) contributory factors. These consultations and reviews will take place over winter 2013/14. Requests for comments on the drink drive statistics have already been included in both the August 2013 and September 2013 publications. A full quinquennial review of Stats19 will be carried out following the roll out of CRASH. All users will be invited to provide comments as a part of this consultation. The local authorities that are already using CRASH have been asked for specific comments, feedback and requests for change for the next version(s) of CRASH. All documentation is published on DfT’s website so users have access to as much information as possible. |

Stats19, 20 and 21 (i.e. the data to be collected and the rules about completing the data and returning the data to DfT) are complex. However, the rules and guidance have been kept updated and are well known within at least some of the user / provider community.
There are a number of data quality issues (such as underreporting) with Stats19 data. Although these do not invalidate the data, DfT should ensure users know about the disadvantages of the data.
There should be better recognition how quality has a greater affect on users who are trying to identify specific problems at specific sites, as opposed to users who are look at accidents and casualties at an aggregated level.
Most data providers who have provided feedback believe that they have access to the right information which tells them what should be collected and how (i.e. Stats20 and Stats21). They also believe that they receive adequate support for technical queries and questions from DfT.
We have published a data guide which includes further information on these topics. In addition, we publish an overall estimate of all casualties, including those not reported to the police, and have been publishing more information using hospital data. However, we recognise that users should be reminded of the imperfect nature of Stats19 and associated datasets. DfT has limited powers to control precisely how police forces and LAs collect and process the data. The Stats21 rules provide a general set of validation procedures and rules which all data are expected to conform with. However, specific local issues need to be dealt with at a local level - the responsibility for precise accuracy (especially grid references) falls mainly to police forces and local highway authorities. Nevertheless, DfT, SCRAS and ACPO all do have a role in ensuring that this message is carried through. |
Although users would like to have more consistency across the country (i.e. data collection methods, the exact nuances of definitions), there is general recognition that this will be very hard to achieve. We use Stats20 and Stats21 to help give as much consistency as possible. Members of the team also take part in a number of local liaison meetings (i.e. between police forces, fire and rescue services and local authorities). However, it would not appropriate to be prescriptive over some matters - for instance, insisting that police forces must use a specific data tool, or insisting that LAs and forces work together in specific ways. The primary users of the data are local bodies (LAs, police forces, fire and rescue services) and the system needs to allow them some freedom to operate their own processes. DfT does not have direct control over how police forces train officers and back office staff to complete the Stats19 forms. However, we will continue to work with ACPO and the devolved Governments to help remind forces of the correct processes.

DfT does have direct contact with forces and / local authorities when systematic errors are being made. Many forces and authorities also contact DfT to help answer questions they have when things are not clear or when they need help. All raw data are published on data.gov.uk and we provide links to the relevant page.

There should be more focus on improving data quality through extra training for police officers. It would be ideal if the database that contains individual road accidents data (with ID removed) collected via the Stats19 form can be more visible. We sometimes need to work on individual cases, rather than aggregated data.

Published data

Would like to see Northern Ireland data included alongside the GB figures.

The absence of information about the amount of 20 mph limited roads in GB makes it impossible to assess whether they are successful at reducing casualties or not.

Although users sometimes have to request bespoke tables from DfT, there is a mixture of thoughts about whether these tables should be included as standard, or whether it is unreasonable to expect this.

The cycling casualty rates currently use road traffic estimates. However, National Travel Survey estimates show something quite different.

It would be useful to have casualty rates broken down by road user type as part of the Main Results as this will help give context.

There are legislative differences between GB and Northern Ireland. It has not been possible to reach an agreement for NI data to be held and processed by DfT for the purposes of the production of UK statistics. This is a noted evidence gap. We are looking into ways which could help us understand how much road is now limited to 20 mph. However, all powers to implement 20 mph limits are devolved to local authorities so we do not currently have a mechanism to find out about them. Introducing a survey or similar to find out has to been done under consideration otherwise it would introduce further burden on local authorities.

The table set we currently have has been built up over a number of years of looking at user requests. If we get regular requests for a certain cut of data, that table is added to the standard list. However, there has to be a balance between pre-preparing a very large number of tables which will get very little use, and using that time for other purposes. We also make the raw data available on data.gov.uk so anyone can create whatever bespoke tables they need themselves.

We are currently considering moving to NTS estimates for cycling (in the same way we already do for pedestrian exposure). One problem is in the timing: NTS data are not available until after RRCGB Main Results are published. We intend to carry out a short consultation on this matter before the 2013 statistics are published. We expect to do this in the 2013 Main Results. Pedestrian miles will not be available at that time, though, and neither will cycling miles if we move to using NTS data. This is because pedestrian miles already come from the NTS, and the NTS figures are not published until after RRCGB Main Results.
Why can't the annual report be published earlier in the year? The current publication schedule is almost 10 months after the end of the year.

There are 49 separate police forces collecting Stats19 data. Each force (and LA) follows its own timetable. DfT set a data closure deadline of May. Although some forces and authorities provide data earlier in the year, a number of forces can only provide it shortly before or after the deadline. DfT then have a few weeks to complete all validation processes and prepare the Main Results for publication in June.

The Annual Report contains over 120 extra tables and a number of articles. The only way of shortening the time to prepare this would be to cut out a number of tables or remove the articles.

In addition, a quarterly release and the provisional drink drive statistics are prepared and published between the Main Results and Annual Report.

Ideally we would like to get the main tables out earlier, but given the significant amount of work it takes and limited resources we have, this is not practical.

Nevertheless, all the raw data are published in June alongside the Main Results, so nothing precludes users from calculating their own statistics and figures.

It would be useful to have the data broken down by parliamentary constituency. This is something we will consider for the future. There is not much demand for data by Parliamentary constituencies, but we accept that the user group that most need it cut this way (MPs) are an important stakeholder.

Unless other users want single files, I would prefer the worksheets to be combined into a small number of files.

We have released an index sheet of all tables so users should be able to find the relevant tables needed. The new .gov.uk site is a work in progress and the Government Digital Service continues to deliver improvements. DfT is working with the GDS in order to deliver as transparent a service as possible.

It is a bit difficult to find statistics in the new website. For example, the Excel tables of the Road accidents series are not well signposted on the main page. In our opinion, they should be more visible (for example, at the top of the page, in the main section). In addition, after selecting the desired publication, the link takes the user to another page and the download is a series of ZIP files where the names of the files are all coded, so the user needs to open all the tables before finding the relevant one (unless the code is known). A more user friendly download would be useful.

We have less direct control over how things appear on the new .GOV.UK site. However, the series and technical pages are being overhauled in order to make them more user-friendly and easier for users to get to the specific tables they need. Some of the tables and sections of some of the pages are ordered by publication date rather than a more logical order (e.g. alphabetically or numerically). This is as a result of a built-in ordering process which is part of the website. However, we are expecting to gain control over these factors to allow us to use whatever order and structure we choose.

Linking data and other data sources

It would be useful to have greater links between the accident data held by DfT and criminal procedures data held by the Ministry of Justice. This would help show how laws, etc, are being enforced and what legal action is taken against drivers.

DfT are looking into this. However, it is likely to be of significant challenge, especially as this would require matching personal data between two departments.
Are there other suitable sets of data which could replace Stats19? If so, why aren't they used?

We already make use of hospital data to provide extra information above and beyond Stats19. Similarly, we regularly match Stats19 data to other data sources (specifically hospital episode data and coroner / procurator fiscal data) in order to add extra information.

The main data source that has not yet been used is accident claims records. These data are all owned by insurance companies and are commercial sensitive. The road safety statistics team is involved in a project which is trying to get access to insurance data and we will report on this whenever any progress has been made.

Although there are a number of quality issues with Stats19 data, they are still useful data and are of good quality in comparison with other sets of public health data.

The Stats19 data are particularly useful when combined with other datasets, for instance within MAST.

If there were specific figures on whiplash cases that would be useful.

Serious injury is not recorded on the basis of a clinical diagnosis. This may cause problems in classification of serious versus slight injury.

Communication
A number of users found that the Transport Statistics User Group provided a good forum through which the road safety statistics team engages and communicates with users.

On a few occasions we have had the need to get in touch. It would be very helpful if the names or at least a phone number could be on the DfT website (there is only an email address).

We will continue to use TSUG as a place / time to inform users about what is changing and to get feedback and comments from users. There is a forthcoming TSUG meeting which will be focussed entirely around road accidents data.

All publications contain the name of the lead statistician for the statistics along with a telephone number and email address which go directly to the road safety statistics team. Although our target is to reply to all emails within 20 working days, in practice it is usual for enquiries not to get a response within two to four days. The telephone number is also on the website. Telephone calls are usually answered by a member of road safety statistics team during working hours.

CRASH
There is some concern that CRASH might both affect (and possibly lower) data quality and that its long rollout time might damage the credibility of Stats19.

CRASH has been in pilot since November 2012. As with all pilots, a number of problems and issues have been found by both the police forces and local authorities. These problems have now either been fixed, or will be fixed in the next major release of CRASH due in February 2014. We expect to start rolling out CRASH to all forces which are taking it from September 2014.

The 2013 data from CRASH forces will be analysed to assess if the system has had an affect on the data quality. This information will be published and made available to users.

If data are supplied directly to DfT from forces through CRASH, the extra validation and value added by local authorities will be lost.

We will assess the quality of data being fed from CRASH. If it is apparent that LA validation is necessary and adds value we will allow LAs to send corrections for a limited number of fields.
Subject to local directions, boxes with a grey background need not be completed if already recorded

* Circle as appropriate

UNCLASSIFIED
| Subject to local directions, boxes with a grey background need not be completed if already recorded | UNCLASSIFIED |
CASUALTY RECORD

3.4 VEHICLE REFERENCE NUMBER

Enter VEH No. which CASUALTY occupied (for pedestrians, code vehicle that struck them first) e.g. 001,002 etc.

<table>
<thead>
<tr>
<th>Casualty</th>
<th>VEH No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0</td>
</tr>
<tr>
<td>003</td>
<td>0</td>
</tr>
<tr>
<td>005</td>
<td>0</td>
</tr>
</tbody>
</table>

3.7 SEX OF CASUALTY

<table>
<thead>
<tr>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASUALTY</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

3.8 AGE OF CASUALTY (Estimate if necessary)

For children less than a year enter 00.

<table>
<thead>
<tr>
<th>Casualty</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>0</td>
</tr>
</tbody>
</table>

3.9 SEVERITY OF CASUALTY

<table>
<thead>
<tr>
<th>Severity</th>
<th>Fatal</th>
<th>Serious</th>
<th>Slight</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASUALTY</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

3.10 PEDESTRIAN LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>PEDESTRIAN C ASUALTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>In carriageway, crossing on pedestrian crossing facility</td>
</tr>
<tr>
<td>02</td>
<td>In carriageway, crossing within zig-zag lines at crossing approach</td>
</tr>
<tr>
<td>03</td>
<td>In carriageway, crossing elsewhere within 50m of pedestrian crossing</td>
</tr>
<tr>
<td>04</td>
<td>In carriageway, crossing elsewhere</td>
</tr>
<tr>
<td>05</td>
<td>On footway or verge</td>
</tr>
<tr>
<td>06</td>
<td>On refuge, central island or central reservation</td>
</tr>
<tr>
<td>07</td>
<td>In centre of carriageway, not on refuge, island or central reservation</td>
</tr>
<tr>
<td>08</td>
<td>In carriageway, not crossing</td>
</tr>
<tr>
<td>09</td>
<td>Unknown or other</td>
</tr>
</tbody>
</table>

3.11 PEDESTRIAN MOVEMENT

- Crossing from driver’s nearside
- Crossing from driver’s nearside-masked by parked or stationary veh
- Crossing from driver’s offside
- Crossing from driver’s offside-masked by parked or stationary veh
- In carriageway, stationary - not crossing (standing or playing)
- In carriageway, stationary - not crossing (standing or playing), masked by parked or stationary veh
- Walking along in carriageway-facing traffic
- Walking along in carriageway-back to traffic
- Unknown or other

3.12 PEDESTRIAN DIRECTION

<table>
<thead>
<tr>
<th>Direction</th>
<th>PEDESTRIAN C ASUALTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Standing still</td>
</tr>
<tr>
<td>02</td>
<td>Northbound</td>
</tr>
<tr>
<td>03</td>
<td>Northeast bound</td>
</tr>
<tr>
<td>04</td>
<td>Eastbound</td>
</tr>
<tr>
<td>05</td>
<td>Southeast bound</td>
</tr>
<tr>
<td>06</td>
<td>Southbound</td>
</tr>
<tr>
<td>07</td>
<td>Southwest bound</td>
</tr>
<tr>
<td>08</td>
<td>Westbound</td>
</tr>
<tr>
<td>09</td>
<td>Northwest bound</td>
</tr>
<tr>
<td>10</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

3.19 PEDESTRIAN ROAD MAINTENANCE WORKER

- No / not applicable
- Yes
- Not known

LOCAL STATISTICS

- Not applicable
- Worn and independently confirmed
- Worn but not independently confirmed
- Not worn
- Unknown
1. Select up to six factors from the grid, relevant to the accident.
2. Factors may be shown in any order, but an indication must be given of whether each factor is very likely (A) or possible (B).
3. Only include factors that you consider contributed to the accident. (i.e. do NOT include "Poor road surface" unless relevant).
4. More than one factor may, if appropriate, be related to the same road user.

5. The same factor may be related to more than one road user.
6. The participant should be identified by the relevant vehicle or casualty ref no. (e.g. 001, 002 etc.), preceded by "V" if the factor applies to a vehicle, driver/rider or the road environment (e.g. V002), or "C" if the factor relates to a pedestrian or passenger casualty (e.g. C001).
7. Enter U000 if the factor relates to an uninjured pedestrian.

These factors reflect the reporting officer’s opinion at the time of reporting and may not be the result of extensive investigation.

<table>
<thead>
<tr>
<th>Road Environment Contributed</th>
<th>103</th>
<th>102</th>
<th>101</th>
<th>110</th>
<th>108</th>
<th>107</th>
<th>109</th>
<th>104</th>
<th>105</th>
<th>106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slippery road (due to weather)</td>
<td>Deposit on road (e.g. oil, mud, chippings)</td>
<td>Poor or defective road surface</td>
<td>Sunken, raised or slippery inspection cover</td>
<td>Road layout (e.g. bend, hill, narrow carriageway)</td>
<td>Temporary road layout (e.g. contraflow)</td>
<td>Animal or object in carriageway</td>
<td>Inadequate or masked signs or road markings</td>
<td>Defective traffic signals</td>
<td>Traffic calming (e.g. speed cushions, road humps, chicanes)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Defects</th>
<th>201</th>
<th>202</th>
<th>203</th>
<th>204</th>
<th>205</th>
<th>206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyres illegal, defective or under-inflated</td>
<td>Defective lights or indicators</td>
<td>Defective steering or suspension</td>
<td>Defective or missing mirrors</td>
<td>Overloaded or poorly loaded vehicle or trailer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injudicious Action</th>
<th>308</th>
<th>306</th>
<th>302</th>
<th>301</th>
<th>307</th>
<th>310</th>
<th>305</th>
<th>304</th>
<th>309</th>
<th>303</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following too close</td>
<td>Exceeding speed limit</td>
<td>Disobeyed Give Way or Stop sign or markings</td>
<td>Disobeyed automatic traffic signal</td>
<td>Travelling too fast for conditions</td>
<td>Cyclist entering road from pavement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Driver/Rider Error or Reaction</th>
<th>405</th>
<th>406</th>
<th>403</th>
<th>408</th>
<th>409</th>
<th>401</th>
<th>402</th>
<th>404</th>
<th>407</th>
<th>410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed to look properly</td>
<td>Failed to judge other person’s path or speed</td>
<td>Poor turn or manoeuvre</td>
<td>Sudden braking</td>
<td>Swerved</td>
<td>Junction overshot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impairment or Distraction</th>
<th>501</th>
<th>502</th>
<th>508</th>
<th>503</th>
<th>509</th>
<th>510</th>
<th>505</th>
<th>504</th>
<th>507</th>
<th>506</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired by alcohol</td>
<td>Impaired by drugs (illicit or medicinal)</td>
<td>Driver using mobile phone</td>
<td>Fatigue</td>
<td>Distraction in vehicle</td>
<td>Distraction outside vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behaviour or Inexperience</th>
<th>602</th>
<th>605</th>
<th>601</th>
<th>603</th>
<th>607</th>
<th>606</th>
<th>604</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careless, reckless or in a hurry</td>
<td>Learner or inexperienced driver/rider</td>
<td>Aggressive driving</td>
<td>Nervous, uncertain or panic</td>
<td>Unfamiliar with model of vehicle</td>
<td>Inexperience of driving on the left</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vision Affected by</th>
<th>701</th>
<th>703</th>
<th>706</th>
<th>707</th>
<th>708</th>
<th>705</th>
<th>710</th>
<th>702</th>
<th>704</th>
<th>709</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary or parked vehicle(s)</td>
<td>Road layout (e.g. bend, winding road, hill crest)</td>
<td>Dazzling sun</td>
<td>Rain, sleet, snow or fog</td>
<td>Spray from other vehicles</td>
<td>Dazzling headlights</td>
<td>Vehicle blind spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pedestrian Only (Casualty or Uninjured)</th>
<th>802</th>
<th>808</th>
<th>803</th>
<th>801</th>
<th>806</th>
<th>807</th>
<th>805</th>
<th>804</th>
<th>809</th>
<th>810</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed to look properly</td>
<td>Careless, reckless or in a hurry</td>
<td>Failed to judge vehicle’s path or speed</td>
<td>Crossing road masked by stationary or parked vehicle</td>
<td>Impaired by alcohol</td>
<td>Impaired by drugs (illicit or medicinal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Codes</th>
<th>901</th>
<th>902</th>
<th>903</th>
<th>904</th>
<th>*999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stolen vehicle</td>
<td>Vehicle in course of crime</td>
<td>Emergency vehicle on a call</td>
<td>Vehicle door opened or closed negligently</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factor in the accident

Which participant?
(e.g. V001, C001, U000)

Very likely (A) or Possible (B)