Social Dimensions of Transport – a resource for Social Impact Appraisals

Contents

1. Introduction ... 2

2. Transport and Social Welfare ... 5
 2.3 Livelihoods and access to markets .. 9
 2.4 Transport services and Intermediate Means of Transport ... 11

3. Distribution of impacts .. 13
 3.1 Gendered mobility patterns .. 13
 3.1.1 Unequal transport access ... 13
 3.1.2 Implications – Women’s economic empowerment .. 14
 3.1.3 Gender, transport services and infrastructure design ... 15
 3.1.4 Gender and social norms ... 16
 3.2 Low income groups ... 16
 3.3 Children and Young People ... 17
 3.4 People with disabilities and older people .. 18

4. Social risks and negative social impacts ... 20
 4.1 Resettlement and Land Grabbing ... 20
 4.1.1. Resources for good practice .. 21
 4.2 Road Safety .. 21
 4.2.1. Resources for good practice .. 23
 4.3 HIV/AIDS transmission .. 23
 4.3.1 Resources for good practice .. 24

5. Public Works and Transport ... 25
 5.1 Poverty Reduction .. 25
 5.1.1 Wages ... 25
 5.1.2 Skills Development .. 26
 5.2. Economic empowerment of women .. 27

6. Social development checklist ... 28

Figures
 Table 1: Rural Access Index ... 3
 Table 2: Time spent on travel .. 11
 Table 3: Examples of developmental and poverty-reduction impacts of rural roads ... 5
 Figure 4: Deaths due to road traffic injuries in Kenya ... 23

This working document was written in 2013 by Katie Norman while on a Graduate Placement at the Department for International Development. With thanks to Gina Porter for reviewing the document and Anna McCord, Katie Chapman, Elizabeth Jones and Simon Narbeth for their contributions.
1. Introduction

1.1 Purpose and structure of document

This document was written as a social impact appraisal to support the design of new transport research business cases. In addition it is anticipated that it will be a useful resource for DFID advisors and external partners working on transport programmes and research. As a summary of key evidence on the social dimensions of transport, it provides a platform for further research, programme design or business case development.

This document outlines the links between poor connectivity and poverty. It covers the social welfare benefits of transport, focusing on health, education, access to markets and improved livelihood opportunities (Section 2). It also examines the distributional impacts of transport interventions, considering gender, income groups, people with disabilities and children (Section 3).

Transport infrastructure is an important part of the picture. However, connectivity and access to services and markets also relies on the availability of affordable and reliable transport services. This appraisal considers the importance of transport services to social welfare (Section 2.3).

While transport interventions can deliver improved social welfare outcomes, they also carry associated risks. For example low income and middle income countries account for 92 percent of global road fatalities, despite owning only 53 percent of the world’s motor vehicles. The social risks and undesirable outcomes of transport interventions are explored along with mitigation suggestions and examples of good practice (Section 4).

In addition, there are two sections which address programme operation and design. An overview of public works programmes is provided to give a framework for assessing the relevance of labour-intensive intervention strategies (Section 5). There is also a Checklist to ensure that social development concerns are sufficiently integrated into the design of both programmes and research (Section 6).

This appraisal has been produced through a review of relevant literature, both online and that supplied by DFID and external colleagues. A combination of case studies, cross-country comparisons, synthesis papers and policy documents has been used to

give a reliable but applied evidence base. A Resource Matrix has also been produced to accompany this appraisal. It summarises key arguments of all works cited to facilitate further research.

1.2 The need for transport

Worldwide over 1 billion people lack access to roads, 98 percent of them in developing countries. For the 72 percent that live in rural areas in poor countries, poor mobility is particularly apparent. 61 percent of rural dwellers in developing countries have access to the transport network. In Sub Saharan Africa this figure is even lower at 30 percent. Among DFID’s priority countries, the average RAI is 43% (see Table 1).

Table 1: Rural Access Index (DFID bilateral countries which are included in RAI data)

<table>
<thead>
<tr>
<th>DFID Priority Country</th>
<th>Rural Access Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>77%</td>
</tr>
<tr>
<td>Nepal</td>
<td>15%</td>
</tr>
<tr>
<td>India</td>
<td>60%</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>37%</td>
</tr>
<tr>
<td>Yemen</td>
<td>21%</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>74%</td>
</tr>
<tr>
<td>Tanzania</td>
<td>38%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>47%</td>
</tr>
<tr>
<td>Niger</td>
<td>37%</td>
</tr>
<tr>
<td>Malawi</td>
<td>38%</td>
</tr>
<tr>
<td>Kenya</td>
<td>44%</td>
</tr>
<tr>
<td>Ghana</td>
<td>44%</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>17%</td>
</tr>
<tr>
<td>Democratic Republic of Congo</td>
<td>26%</td>
</tr>
<tr>
<td>Uganda</td>
<td>27%</td>
</tr>
<tr>
<td>Zambia</td>
<td>64%</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>65%</td>
</tr>
</tbody>
</table>

The report from the High Level Panel on the Post 2015 development framework suggested the following goal on transport: “Strengthen productive capacity by

5 World Bank Development Indicators
6 World Bank (2006) Rural Access Index
7 Refers to percentage of the population living within 2km of an all season road, irrespective of the availability of suitable transport services.
providing universal access to financial services and infrastructure such as transportation and ICT”. The report recognises that connectivity can help people to increase their income through greater productivity.
2. Transport and Social Welfare

2.1 Poverty-reducing impacts of connectivity

Poor connectivity is one of the factors that contribute to household poverty, restricting access to markets and basic services. Lack of mobility can be a significant barrier to reaching the Millennium Development Goals: Halving poverty and hunger, increasing access to education, reducing maternal mortality and improving child health. Although not recognised in the current MDG targets, evidence suggests that transport and connectivity are highly instrumental in the delivery of social welfare outcomes by increasing individual access to facilities and supporting income generation.

There are studies linking connectivity with measurable poverty reduction. Research in Ethiopia found that access to all-weather roads reduced poverty by 6.9 percent and increased consumption growth by 16.3 percent. Several studies have found correlation between access to transport and rural poverty as well as other social development indicators such as school enrolments. (See Table 3)

Table 2: Examples of developmental and poverty-reduction impacts of rural roads.
Source: Kingombe (2011)

<table>
<thead>
<tr>
<th>Author</th>
<th>Country covered</th>
<th>Data</th>
<th>Method</th>
<th>Major Findings</th>
</tr>
</thead>
</table>

9 Connectivity/transport is now on the agenda for the post-2015 targets.
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Methodology</th>
<th>Findings/Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deininger and Okidi (2003)</td>
<td>Uganda</td>
<td>Micro-level survey and panel-data evidence of about 1,200 households spanning 1992-2000</td>
<td>Proceed in three stages: i) estimating determinants of economic growth at the household level, ii) expanded to consider poverty reduction, and iii) perform simulations. Access to key public goods such as infrastructure, and the avoidance of civil strife has been a critical determinant of households’ ability to increase their income and reduce the risk of falling into poverty.</td>
</tr>
<tr>
<td>Khandker et al. (2006)</td>
<td>Bangladesh</td>
<td>Household-level panel data</td>
<td>Road investments are pro-poor, meaning the gains are proportionately higher for the poor than for the non-poor.</td>
</tr>
<tr>
<td>Jacoby (2000)</td>
<td>Nepal</td>
<td>Nepal Living Standard Surveys</td>
<td>Large benefits from extending roads into remote rural areas, much of these gains going to poorer households. But rural road construction is not the magic bullet for poverty alleviation.</td>
</tr>
<tr>
<td>Escobal and Ponce (2003)</td>
<td>Peru</td>
<td>Using information from rural households living in some of the poorest districts of Peru</td>
<td>The propensity score matching methodology is used, after adapting it to the specific characteristics of the data used. Rehabilitation road accessibility can be related to changes in income sources, as these enhance non-agricultural income opportunities, especially from wage-employment sources.</td>
</tr>
</tbody>
</table>

\[16\] But see Khandker and Koolwal 2010. They construct a new data set from 3 household panel surveys and find that ‘while poorer households have benefited from paved road access and irrigation, ... households at higher percentiles [of per capita income] appear to have capitalised to a greater extent from these interventions’ [p. 1128, “How Infrastructure and Financial Institutions Affect Rural Income and Poverty: Evidence from Bangladesh”, *Journal of Development Studies*, 46:6]
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokshin and Yemtsow (2005)</td>
<td>Georgia: Rural infrastructure rehabilitation projects for schools, roads and water supply systems between 1998 and 2001</td>
<td>Community-level panel data from a regular household survey augmented with a special community module. Propensity score-matched difference-in-difference comparisons. Plausible results regarding the size of welfare gains from a particular project at the village level and allows for differentiation of benefits between the poor and non-poor.</td>
</tr>
<tr>
<td>Dercon et al. (2008)</td>
<td>15 Ethiopian villages, 1994-2004</td>
<td>Making use of new longitudinal household survey data that were not used in earlier Dercon papers. An instrumental variables model using Generalised Methods of Moments and controlling for household fixed effects. Access to all-weather roads: reduces poverty by 6.9 percentage points and increases consumption growth by 16.3%. These results are robust to changes in model specification and estimation methods.</td>
</tr>
<tr>
<td>Dercon and Hoddinott (2005)</td>
<td>15 Ethiopian villages</td>
<td>Data taken from the Ethiopia Rural Household Survey (ERHS), a unique longitudinal household data set covering households in 15 areas of rural Ethiopia. Data collection started in 1989 and the survey was expanded in 1994 to yield a sample of 1,477 households. An additional round was conducted in late 1994, with further rounds in 1995, 1997, 1999, and 2004. Estimate a series of probit regressions. Fixed effect IV regression. An increase of 10 km in the distance from the rural village to the closest market town has a dramatic effect on the likelihood that the household purchases inputs, controlling for the effect of other factors. Increases in road quality have strong positive growth effects.</td>
</tr>
<tr>
<td>Kingombe (2011)</td>
<td>Zambia (Eastern Province)</td>
<td>(Pseudo-panel) household surveys (LCMS), pooled repeated cross-section Post-Harvest Surveys (PHS), community survey. Average treatment effects, differences-to-differences estimators, parametric and semi-parametric regression models. Improved accessibility led to changes in land allocation and in yields to the cash crop – cotton. Although, the mean cotton sales</td>
</tr>
</tbody>
</table>

| transport/firm survey | Tobit models, multi-nominal logit | share of household income more than doubled, the estimation results only show small gains to mean consumption |

2.2 Access to health and education services

Studies suggest that increased mobility can improve the uptake and quality of health and education services, particularly in rural or isolated areas\(^{17}\).

Connectivity is particularly important in access to emergency and life-saving healthcare. Access to transport can increase the uptake of health services. A study in South Africa found that the adjusted odds of a homestead within 30 minutes of a clinic making use of the service were 10 times those of a homestead in the 90-120 minute zone\(^{18}\). Evidence from transport interventions show that improved mobility can have measurable impacts on health indicators such as immunization\(^{19}\). Low-cost, timely transport also improves access to ARV therapy\(^{20}\).

Transport is also a key component of the “three delays” model for maternal mortality\(^{21}\). The World Health Organisation estimates that 75 percent of maternal deaths can be prevented if emergency obstetric care can be reached within 12 hours of obstetric complication\(^{22}\). Road infrastructure and transport services can increase the likelihood of reaching obstetric care. In Pakistan, it was found that 58 percent of births in villages with road access were assisted by a skilled attended, compared with 39 percent for women without road access\(^{23}\).

Transport infrastructure can improve education outcomes by increasing primary school enrolment, especially where road improvements are associated with improved access to transport services. In Morocco, the most significant impact of a

rural roads programme was a sharp increase in school enrolment, especially for girls24. Evidence from Vietnam shows improvements in primary school completion rates as a result of rural road rehabilitation25.

Connectivity is particularly important for secondary school attendance, since secondary schools tend to be more sparsely located than primary. A study of transport infrastructure in Asia found that, while all villages surveyed had primary schools, many students had to travel outside of the village for post-primary education. Children, in particular adolescent girls, may be prevented from attending school because of parental fears for their safety on the journeys between school and home26. Thus, amongst other factors such as the spread of secondary schools, enrolment in secondary and further education is contingent on pupils’ proximity to school and mobility potential27.

Connectivity may also affect service delivery long-term. The more accessible areas can attract better quality staff, improve staff retention in schools and health centres28 and increase the feasibility of monitoring rural schools29. Investments in transport and infrastructure more broadly may facilitate the improvement and equity of health and education services.

2.3 Livelihoods and access to markets

As well as increasing access to facilities, transport access can improve livelihood prospects. Transport directly benefits many poor people through employment in the sector. Connectivity also provides indirect benefits. It can improve agricultural profitability and facilitate income diversification.

Proximity to urban and trading centres is crucial for agricultural trade, which comprises 75\% of rural employment30. Underdeveloped road and transport networks lead to high transport costs for moving agricultural products to market as well as bringing in farm inputs, reducing farmers’ competitiveness31. Studies found that agricultural production is highly correlated with proximity (as measured by

27 Cook, C \textit{et al}. (2005) \textit{Assessing the Impact of Transport and Energy Infrastructure on Poverty Reduction}. Asian Development Bank publications
28 World Health Organisation (2009) \textit{Increasing access to health workers in remote and rural areas through improved retention – Background paper}
30 Anriquez, G. and L. Stloukal (2008) \textit{Rural Population Change in Developing Countries: Lessons for Policymaking} FAO ESA Working Paper No.08-09
travel time to urban markets) and that isolation strongly negatively correlates with agricultural productivity. Road access can therefore increase agricultural output and farmer incomes by improved marketing opportunities and reduced transaction costs.

Evidence shows that rural road access increases non-agricultural diversification. Those with better road access are more likely to source income from other sectors, most notably service-based enterprises. Improved connectivity can encourage diversification to more profitable livelihoods, broadening the range of economic activities in a region. A study in Madagascar found that reducing the cost of transport in remote areas boosted household income by nearly half, mostly by raising non-farm earnings.

Time poverty is a barrier to productive work and increasing access to transport can relieve this. People living in poverty, particularly in isolated areas, tend to spend much more time travelling (See Table 2). A large percentage of this travel is for domestic purposes, the burden of which is often disproportionately borne by women and their children. Women and girls in particular are involved in fuelwood and water porterage, most of which is unremunerated. These activities can affect educational outcomes as well as having long-term health implications. Improving mobility and proximity of basic utilities (water, fuel), services and markets could improve welfare outcomes, both within the household by decreasing the amount of time spent on domestic tasks and by releasing time for income generation.

Table 3: Time spent on travel (Source: Booth et al., 2000\(^{41}\))

<table>
<thead>
<tr>
<th>Survey Location</th>
<th>Water</th>
<th>Firewood</th>
<th>Cultivated Land</th>
<th>Dispensary</th>
<th>Hospital</th>
<th>Grinding mill</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanga, Tanzania</td>
<td>31 mins</td>
<td>44 mins</td>
<td>N/A</td>
<td>1hr 45 mins</td>
<td>N/A</td>
<td>1hr 51 mins</td>
<td>2hrs 37 mins</td>
</tr>
<tr>
<td>Makete, Tanzania</td>
<td>23 mins</td>
<td>1hr 38 mins</td>
<td>1hr 5 mins</td>
<td>1hr 36 mins</td>
<td>5hrs 40 mins</td>
<td>1hr 42 mins</td>
<td>3hrs 18 mins</td>
</tr>
<tr>
<td>Ghana [8 villages dispersed across the country]</td>
<td>25 mins</td>
<td>43 mins</td>
<td>48 mins</td>
<td>1hr 40 mins</td>
<td>2hrs 38 mins</td>
<td>28 mins</td>
<td>2hrs 8 mins</td>
</tr>
<tr>
<td>Aurora, Philippines</td>
<td>5 mins</td>
<td>27 mins</td>
<td>11 mins</td>
<td>25 mins</td>
<td>1hr 54 mins</td>
<td>21 mins</td>
<td>2hrs 8 mins</td>
</tr>
</tbody>
</table>

These factors contributing to improved livelihoods support the findings of studies which demonstrate that road access correlates with greater household wealth and consumption levels\(^{42,43}\). Not only national highways and links to urban centres are important. Improved access to market towns can also increase economic activity and improve welfare in rural localities\(^{44}\). Thus rural road interventions can be an effective measure to reduce household poverty. An analysis of government spending in India found that expenditure on roads has by far the largest impact on rural poverty, increasing productivity and leading to higher wages\(^{45}\).

2.4 Transport services and Intermediate Means of Transport

Reliable and affordable transport services also facilitate access to markets and basic services. There have been surveys conducted in five African countries suggesting that both motorised and intermediate means of transport\(^{46}\) (IMTs) are vital for access to

\(^{46}\) Intermediate Means of Transport includes wheelbarrows, bicycles, rickshaws, various animal carts and wagons, motorcycles, motorized three-wheelers, and two-wheel tractors that fill the gap between more expensive motor vehicles and pedestrian travel and porterage.
facilities in rural areas47. Significant time savings and productivity gains can be achieved by using IMTs which are low cost but generate high returns48.

In urban settings, where poor people live in the more remote peri-urban periphery, transport can comprise up to 35\% of expenditure from disposable income49. Increasing the capacity and affordability of urban transport networks could reduce travel time and release household income for other needs.

\textit{It is worth noting that the evidence base on transport services, both motorised and non, is weak. Further research could be designed to address the dearth of evidence in this area, analysing the effectiveness of interventions for different social groups (see Section 3), not just mapping service use among the poor.}

3. Distribution of impacts

Patterns of transport use vary between population groups. Some groups have a disproportionately high travel burden due to poor access to transport infrastructure. Transport interventions will also have varying distributional impacts. This section considers both these variations with regards to gender (section 3.1), income groups (section 3.2), children and young people (section 3.3) and disabled and infirm people with additional mobility requirements (section 3.4).

3.1 Gendered mobility patterns

While women spend more time and effort on travel than men, they also have less access to private vehicles and public services. These gendered mobility patterns can prevent women from entering labour markets, engaging in productive work and accessing public services.

Research shows that it is not merely the lack of road infrastructure which limits mobility. For women in particular, safe/secure, cheap, reliable/predictable and efficient transport services are vital in relieving the time burden of their work load and facilitating economic empowerment.

3.1.1 Unequal transport access

Transport services are particularly important for women, who typically spend more time travelling. In Ghana, the typical woman devotes almost three times as many hours per annum (on average 20 hours weekly) to transport. This represents 50 percent of the time a worker would expect to devote to a typical full-time job, severely limiting the hours women can devote to productive work50. Women (with their children) are largely responsible for domestic travel associated with load-carrying, a survey from 4 areas in sub-Saharan Africa finding that between 71 and 96 percent of domestic carrying was undertaken by women. Measured in effort, women accounted for 66-84 percent of energy expended on travel51.

While women spend more time in transport, they often have less access to private vehicles. For example in Bamako, Mali only 13 percent of women had access to private transport compared to 44 percent of men52. “Since income-generating (productive) trips are more valued than domestic (reproductive) trips, vehicle use is

higher for those trips and thus men usually benefit first. This pattern is reflected across other regions. In Ashgabat, Turkmenistan, 28 percent of women walk to work compared with 14 percent of men.

As transport and connectivity is a crucial enabler for engaging in wealth creation, unequal access disadvantages women economically.

3.1.2 Implications – Women’s economic empowerment

Poor infrastructure is often a barrier to productive employment. However, the gendered division of labour means that poor connectivity disproportionately affects women, often limiting them to unpaid and household work. Where women are able to find employment, they may be forced into less productive work which is nearer or better connected to home.

One of the main causes of women’s lower earnings and productivity is the greater constraints on their time. While these constraints come mainly from informal institutions (e.g., gendered social norms about childcare and women’s work), improving women’s access to markets and freeing up their time through infrastructure and transport investments can help to alleviate time pressures and allow for increased productivity. The building of a road in rural Yemen led to increased household incomes and increased numbers of households buying basic goods such as water or firewood. This can help to alleviate the time pressure on women who are largely responsible for collecting these goods otherwise.

Lack of mobility disadvantages women workers disproportionately. In Delhi, when 700,000 squatters resettled on the periphery of the city, female employment fell 27 percent because travel time increased three-fold. Male employment in the same location only decreased by 5 percent. Mobility seems to be less negotiable for women, whose time burden is greater and whose employment may also be seen to be less of a priority in the household.

Equally, good transport services and other transport interventions can improve economic opportunities for women. A World Bank study in Urban Yemen found direct correlation between provision of transport infrastructure and services and women’s economic empowerment. In rural Peru, 43 percent of women reported

56 World Bank (2010) ‘Gender and Transport in MENA: Case Studies from West Bank Gaza and Yemen’ MENA Knowledge and Learning: Quick Notes Series No. 21
58 World Bank (2010) ‘Gender and Transport in MENA: Case Studies from West Bank Gaza and Yemen’ MENA Knowledge and Learning: Quick Notes Series No. 21
that the availability of rehabilitated roads and tracks enable them to obtain more income. In Bangladesh, better rural roads led to a 49% increase in male labour supply and 51 percent increase in female labour supply\(^59\).

It is not just engagement but profitability which is affected by poor mobility. The gap in profitability between men and women in paid work is stark. Differences in average wages by gender range from 20 percent in Mozambique and Pakistan to more than 80 percent in Cote d’Ivoire and Jordan\(^60\). This is partly attributable to differences in occupation. World Development Report 2012 states that gender differences in occupation and the employment sector account for 10-50 percent of the observed wage gap in 33 (of 53) low and middle income countries\(^61\). While a range of factors contribute to the segregation of male and female employment, poor mobility and access to transport can lead women to choose less profitable jobs which are easier to travel to, because of the higher constraints on their time.

\textit{There remains a need for more research on the links between roads, transport services, connectivity and the economic empowerment of women and girls.}

3.1.3 Gender, transport services and infrastructure design

It is not only the availability, but also the quality and safety/security, of transport infrastructure which is important for women’s economic empowerment.

Women can be deterred from using public transport, or even travelling on foot if they do not feel safe. They may not want to wait for public transport for fear of harassment and therefore are less likely to use services with a random or unreliable schedule. Reliable return services home are particularly vital\(^62\). While this could prevent travel altogether, it can also raise the cost for those willing to travel, as they may prefer to take several different journeys than wait for a cheaper or more direct route. A World Bank study in Lima, Peru found that fear of sexual harassment and violence on public transport was one of the major constraints on women’s mobility. An intervention that introduced teams of male and female drivers and conductors on public transport was found to be successful in addressing this concern\(^63\).

Similarly, an absence of street lighting in Sana’a, Yemen left women more vulnerable and fearful of assault and theft\(^64\). Women might give up on work or productive activities because they do not feel safe while travelling.

\(^{60}\) World Bank (2012) \textit{World Development Report – Gender Equality and Development}

\(^{63}\) Malmberg Calvo, C. \textit{et al.} (2001) \textit{Transport: Infrastructure and Services}

\(^{64}\) World Bank (2010) ‘Gender and Transport in MENA: Case Studies from West Bank Gaza and Yemen’ \textit{MENA Knowledge and Learning: Quick Notes Series} No. 21
A study of social exclusion and transport in rural South Africa found that an infrastructure intervention which had upgraded 15km of road had not led to any improvement in the supply of road passenger services. As a result the poor, largely women in this area, were not benefiting from these works65.

3.1.4 Gender and social norms

While transport can facilitate women’s participation in the workforce and increase their productivity, studies have shown in some cases that social norms are so prevailing as to prevent uptake of transport services66. In some contexts, cultural constraints prevent women from travelling to markets or employment. Men may associate women’s frequent and distant travel with promiscuity and therefore discourage these trips67.

Not only may social norms prevent women from using transport but they can dramatically increase the cost. For example, women that are not allowed to travel unaccompanied must also pay for a male family member in some cases (thus 70\% of women interviewed in the West Bank and Gaza said transport was unaffordable)68.

One area where figures on women’s mobility do not converge is access to public transport. While in some countries women have equal access to public transport, elsewhere their access is restricted. Clearly women’s mobility is not merely a question of infrastructure and transport services availability. Gender sensitive infrastructure needs to take account of social norms which affect the success of transport programmes in increasing connectivity for women. Research or interventions that don’t take into account the influence of these attitudes over transport use may risk excluding vulnerable groups, including women, from benefitting.

3.2 Low income groups

Poverty tends to correlate with rural isolation, the poorest people having least access to transport networks69. However, the evidence is equivocal in whether transport interventions benefit the poorest quintiles disproportionately or even equally.

65 Mahapa, S. and M. Mashiri (2001) “Social exclusion and rural transport: Gender aspects of a road improvement project in Tshitwe Northern Province” Development Southern Africa, 18:3

66 World Bank (2010) ‘Gender and Transport in MENA: Case Studies from West Bank Gaza and Yemen’ MENA Knowledge and Learning: Quick Notes Series No. 21

67 Porter, G. (2011) “‘I think a woman who travels a lot is befriending other men and that’s why she travels’: Mobility constraints and their implications for rural women and girl children in sub-Saharan Africa”. Gender place and culture: 18:1, 65-81.

68 World Bank (2010) ‘Gender and Transport in MENA: Case Studies from West Bank Gaza and Yemen’ MENA Knowledge and Learning: Quick Notes Series No. 21

A study in Bangladesh found that in some cases, gains from rural road projects were significantly higher for poor than non-poor. Evidence from Nepal showed that while many of the benefits from transport infrastructure would go to poor households, they would not be large enough, or targeted efficiently enough to appreciably reduce income inequality in the area. Conversely, a study in Peru found that while rehabilitation of motorised roads correlated with increase in income, those households also had higher education, larger land holdings and greater access to other infrastructure. It indicates the poorest were not benefitting as much from road interventions as those with considerable assets. In many contexts, those who are already mobile are likely to benefit most from road improvements.

Roads programmes may increase proximity to facilities, product and labour markets but this does not automatically couple with increased accessibility. Where transport services still remain scarce (whether motorised or intermediate) prices are likely to exceed the income capacity of the poorest, in particular for regular or frequent trips. Wider access problems of poor infrastructure, services and employment opportunities could dampen the benefits of transport interventions for the poorest beneficiaries. The evidence around the distributional impacts by income groups of transport interventions is thin. Further research in this area could start to fill this knowledge gap and gather more evidence on connectivity for the poorest groups.

3.3 Children and Young People

Like women, children also tend to bear a disproportionately high transport burden. In sub-Saharan Africa travel for domestic tasks, including headloading, is generally considered a task for girls, women and young boys. Young men beyond their mid-teens are usually not expected to carry out such work.

The burden of headloading and travel is most severe in remote rural areas where the lack of transport brings additional demands. A qualitative study in Malawi found many children to be absent from school two days a week when the markets are held in town so that they can transport firewood. Travel for unpaid work can affect schooling attendance as well as attainment. Research indicates that headloading

may also have long-term health consequences. Children have reported severe head, neck and back pain as a result of repeated porterage of heavy loads.\footnote{Porter, G. \textit{et al.} (2012) “Child porterage and Africa’s transport gap: evidence from Ghana, Malawi and South Africa”. \textit{World Development} 40.10: 2136-2154}

Young women and girls typically have limited access to private vehicles. However, in sub-Saharan Africa in particular, operation of cycle and motorbike taxis seems to be principally in the hands of young men, offering lucrative livelihood opportunities. Initial research also suggests that the availability of IMTs could help ease children’s transport burden. South Africa’s Shova Kalula Programme, which provides low-cost bicycles to disadvantaged groups was shown to be helping school children to arrive at school in better time.\footnote{Mahapa, S. 2003 \textit{Integrating gender into World Bank financed transport programmes. case study South Africa Shova Kalula}. Accessed at: http://www4.worldbank.org/afr/ssa/tp/Resources/HTML/Gender-RG/Source\%20\%20documents/case\%20studies/ICNET\%20Studies\%20for\%20WB/CSICN\%20SouthAfrica\%20Case.pdf} \textit{The potential for IMTs to improve young people’s access to services needs further investigation, particularly concerning ways to address the gender gap in access to vehicles.}

3.4 People with disabilities and older people

Some people, including the infirm elderly, and those with disabilities and illness, have particular problems relating to mobility and access. These groups may be less likely to benefit from access to standard means of transport which do not cater to their needs. Local and more adaptable transport solutions may be important for improving their social welfare but will need careful consultation with older people and those with disabilities.\footnote{Clarke N. (1999) Considering wheelchair riders as transport users. pp. 195-214 in: \textit{Meeting transport needs with intermediate modes of transport}. Lanka Forum of Rural Transport Development, Colombo, Sri Lanka.}

A study in Papua New Guinea found no evidence that people with disabilities were involved in road planning consultations and that decision makers were very unaware of their needs. While most participants reported that roads infrastructure had improved their access to services, there was a concern that one new road studied was so inaccessible that it had a neutral or negative impact on accessibility.\footnote{Whitzman, C., James K and Poweseu, I. (2013) Travelling together: participatory research methods for disability inclusive road development in Papua New Guinea. \textit{J. of Transport Geography} 26: 65-71.}

Inadequate monitoring and enforcement of compliance with accessibility legislation is a key impediment to inclusive transport. Although Mozambique, Malawi and India require urban public transport vehicles to have reserved seats and concessional fares, these measures are only very rarely enforced.\footnote{Roberts, P., & Babinard, J. (2004). \textit{Transport strategy to improve accessibility in developing countries}. Accessed at: http://www.sortclearinghouse.info/cgi/viewcontent.cgi?article=1326&context=research Research on successful}
accessibility policies and interventions is needed to inform the programmes in this field.

There has been limited research into the needs of older transport users in low-income countries. However, older people are likely to have elevated transport demands due to the number that are primary guardians for children. A recent child mobility study found that in South Africa, Malawi and Ghana respectively, 14%, 9% and 9% live with grandparents. An increasing number are also primary carers for their adult children with HIV/AIDS – a role often involving prolonged travel.

Mobility constraints of older people are likely to have a significant impact on their ability to act effectively in these roles. A study in Ibadan, Nigeria, found that lack of reliable transport services, poor facilities and long waiting times constrained transport use among older people. The needs of older people, often more sensitive to poor quality transport services, are important to consider in service design. More research is needed in this area to identify specific user needs and ways to meet these requirements.

81 Porter, G. et al. (2010) “Youth transport, mobility and security in sub-Saharan Africa: the gendered journey to school” World Transport Policy and Practice. 16,1: 51-71
4. Social risks and negative social impacts

While the wider literature largely supports the extension of transport access as a tool for poverty reduction, many articles advocate the need for a broader, integrated approach. It has become apparent that in many cases “roads are not enough” to improve mobility. Depending on the context, affordable and reliable transport services are necessary to ensure poor and vulnerable groups benefit from infrastructure developments. Some case studies have also shown transport programmes which have had little or no impact on poverty reduction. It is important that DFID’s research will consider programme failures, look at integrated transport needs and assess combined interventions.

Transport programmes also come with associated risks. Building infrastructure can result in displaced communities and livelihoods. Furthermore, while motorised transport access may increase mobility, it also introduces the risk of road traffic accidents and increased potential for sexually transmitted diseases (STDs). Research to understand effective mitigation strategies for these negative impacts could complement the social development agenda.

4.1 Resettlement and Land Grabbing

The World Bank reports that transport is the largest cause of resettlement in their portfolios. Resettlement is involved in 20 per cent of their transport projects. If residents are not adequately compensated for their loss of livelihood and responsibly relocated, their social welfare may worsen.

In the more extreme cases, infrastructure programmes have been associated with human rights abuses. The World Bank funded Polonoroeste programme in Brazil was accused of severe environmental and cultural devastation of Amerindian territory. While this is an example of a wider governmental integration programme, resettlement and land loss are frequently associated with roads projects that are poorly planned.

However, resettlement can also be an opportunity to improve household mobility. A study in northern Uganda found that resettlement after conflict sees people living

88 Ibid
much closer to roads that they had previously89. Voluntary resettlement can offer opportunities for improved access to services, though it also poses risks.

Minority groups with limited land rights and poor political representation may be particularly vulnerable to involuntary resettlement. Transport-related resettlements also affect the poorest in disproportionate numbers because low-income settlements naturally tend to be identified as low-cost, peripheral and easily cleared areas for new transport routes90.

In addition, road building and reconstruction has been associated with a rise in land grabbing. Unruh and Shalaby find that in Afghanistan, road construction and reconstruction can drive large increases in land value, causing a surge in land grabbing practices91. This can provoke further conflict and undermine the economic benefits that may arise from road construction. \textit{Transport programmes in post-conflict environments need to consider special measures to mitigate these risks.}

\subsection*{4.1.1. Resources for good practice}

The IFC have produced a guide for preparing a resettlement action plan to promote responsible management of involuntary resettlement when unavoidable92. This outlines the components of a resettlement action plan and provides an implementation checklist to support project planning.

The World Bank’s resettlement sourcebook also provides an example of a Resettlement Entitlement Matrix, identifying the affected population groups and compensation policies for a flood control project in the China Yangtze Basin93.

\subsection*{4.2 Road Safety}

Each year close to 1.24 million people die as a result of road crashes94. As well as creating social costs for individuals and communities, road traffic injuries place a heavy burden on health services and economies. Road traffic accidents are predicted to become the third leading cause of disability-adjusted life years (DALYs) lost globally by 2020.

\begin{flushright}
93 World Bank (2004) \textit{Involuntary Resettlement Sourcebook: Planning and Implementation in Development Projects}
\end{flushright}
The current burden of road traffic accidents in low and middle income countries is disproportionately high considering their relatively limited road infrastructure. LICs and MICs together own 53% of the world’s motor vehicles but account for more than 92% of global fatalities\(^\text{95}\). Africa is the region with the worst death rate from road crashes with a fatality rate of 24 deaths per 100,000 population\(^\text{96}\). Young people and women, spending more time travelling but with poorer access to vehicles, are some of the worst affected. Road crashes are the second leading cause of death for the 5-44 age group in Africa\(^\text{97}\).

The negative impacts of road investments are experienced by the poorer and more vulnerable groups, those with poor mobility. Low income groups are more likely to be pedestrians, passengers of buses, operators or passengers of motorcycle-taxis, motorcyclists or cyclists. In low-income countries, with fewer cars and motorised vehicles, the majority of road traffic victims are not drivers but other road users (see Fig 4).

Fatalities, injuries and disabilities arising from road accidents can worsen household poverty. The costs of prolonged medical care, funeral costs, or the loss of income due to disability are all costly. A study in Bangladesh found that road crashes caused reduced household income and food consumption, in some cases pushing “non-poor” families into poverty\(^\text{98}\).

Road safety investments and regulations must keep pace with the accelerated expansion of road networks and motorised transport use in order to mitigate the considerable social burden of road accidents.

4.2.1. Resources for good practice

Road crashes and fatalities can be prevented by better planning and more safety conscious design of the road network. The Transport Research Laboratory’s guide to road safety in developing countries100 provides information on incorporating safety factors when planning, designing and operating road works and includes a Road Safety Checklist for infrastructure assessment.

4.3 HIV/AIDS transmission

Increased connectivity and mobility can increase the uptake of healthcare and improve the quality of service. However, increased mobility may also accelerate the spread of infectious diseases and epidemics. This risk is particularly well evidenced in relation to HIV/AIDS and the prevalence of risky sexual practices among transport sector workers101,102.

Studies document higher prevalence of HIV among transport sector workers (in particular road and rail) than the general population103. Due to long periods of time spent away from their families and spouses, frequent delays at border crossings and

road “choke points”, and the high incidence of engagement with commercial sex workers, risky sexual practices are particularly common among workers in this sector.

The construction sector is also commonly identified as one of the groups most at risk of HIV infection. Many are mobile workers, particularly in transport construction, with poor living and working conditions and often separated from their families. A study in Ghana found the prevalence of HIV infection to be 5-10 percent higher in the district where the Akosombo hydroelectric dam was under construction than in neighbouring districts. The construction site drew workers away from their families and increased commercial sex work in the area.

Short-term mobility is also associated with higher HIV prevalence as well as with risky behaviours. An analysis of HIV transmission in West Africa found that infection rates were higher among populations living in interfaces such as urban centres or near major roads. Connectivity and mobility seem to be important factors in the transmission of infectious disease.

4.3.1 Resources for good practice

Examples of good practice HIV interventions in the sector include road-side clinics and wellness centres for truckers, health passports and targeted communication materials. Good practice corridor projects have provided condoms, STI treatment and HIV education to transport drivers and passengers along corridors.

The ILO guidelines on HIV/AIDS in the transport sector also detail what a workplace policy on HIV/AIDS should cover and include recommendations based on HIV/AIDS prevention work in the sector.

109 ILO (2005) *Using the ILO Code of Practice on HIV/AIDS and the world of work: Guidelines for the transport sector*
5. Public Works and Transport

Labour-based interventions involve community members in the building of productive assets, such as roads, in exchange for social protection and wage benefits. These range from government led public works programmes (PWPs), such as Ethiopia’s Productive Safety Net Programme (PSNP) and India’s Mahatma Ghandi National Rural Employment Guarantee Scheme (MGNREGS), to small-scale interventions. This section will examine the success of this model and viability for transport programming considering: 1) whether PWPs have measurable poverty reduction impacts and 2) whether PWPs increase women’s community participation and empowerment.

5.1 Poverty Reduction

Public works programmes can contribute to poverty reduction via three main pathways:

1) Wages
2) Asset generation
3) Skills development

Wages boost household income and may increase investment and savings. Asset generation (as discussed in section 2) is an output in itself that can improve social welfare. Skills can be acquired through participation in PWPs that may improve productivity, employability and personal welfare\footnote{McCord, A. (2011) Appraising productivity enhancing Public Works Programmes. ODI Social Protection Tool sheet}.\footnote{McCord, A. (2012) Public Works and social protection in sub-Saharan Africa: Do public works work for the poor. UCT Press.}

5.1.1 Wages

However there were programmes that found more permanent impacts that, if not reducing the poverty headcount, alleviated the effects of poverty. Other studies showed various improvements to social welfare and productivity through avenues such as food security and diversification of income to non-farm businesses. A study in Bangladesh found a lagged effect of infrastructure on paid labour for women, attributing the additional income not to infrastructure construction but other non-farm employment. Local livelihood cycles can dictate the duration, timing and frequency of wage employment provided through public works. In some cases, livelihood gaps necessitate social protection to alleviate short-term household poverty. Where chronic poverty reduction is targeted, long-term and more sustainable employment programmes may be more appropriate.

5.1.2 Skills Development

Skills development via participation in public works can improve productivity, employability and social welfare. Programmes such as the Ethiopian PSNP combined wage employment with extension services, leading to increased uptake of new agricultural technologies. Skills acquired through public works may improve the employability of participants, but depends largely on the type of project and how far skills are transferable. A study in South Africa found that projects in the building industry led to greater potential than roadworks of finding work after the project. Skills development in the absence of market demand (for labour, goods and services) is unlikely to have a significant impact on productivity.

Public works programmes can also integrate health, life skills and/or personal development into programme design so as to improve social welfare outcomes beyond direct productivity impact. Prioritising between these 3 poverty reduction pathways (wages, asset creation, skills development) may determine programme design. If asset construction or maintenance is the primary objective, labour-based operation may not be deemed the most appropriate system. Similarly, where wage employment is prioritised, the location or design of assets may change according to local livelihood patterns. Balancing these pathways may help to clarify programme design.

5.2. Economic empowerment of women

Involving women in labour-based transport programmes can increase women’s economic empowerment and community participation. Some public works programmes have introduced quotas for female employees to encourage greater gender equity in their workforce. The ILO Rural Maintenance Programme successfully employs over 50,000 rural women to maintain earthen roads, also providing training over a 4 year period. Placing women in supervisory and technical positions, as occurred in Botswana’s roads maintenance programme, can increase women’s engagement in training and further employment.

However, women’s participation is also largely contingent on social norms and working patterns. One of the main obstacles is women’s domestic and childcare responsibilities. In Africa, women who participate in employment programmes are generally young and unmarried. For married women with childcare duties, their involvement is thus very sensitive to timing and location of work. Another barrier to participation is access to information. Advertisement for job availability provided only at district level may not reach women. Gendered needs must be considered.

References:

throughout programme planning and implementation to overcome these barriers to women’s participation\(^{135}\).

6. Social development checklist

Addressing the social dimensions of transport infrastructure and transport services requires consideration of the following issues when designing and monitoring programmes and research:

- **Who benefits and who doesn’t?** What are the distributional impacts of transport interventions – considering poor and vulnerable groups [e.g. women, children, unemployed youth, older people, people with disabilities, ethnic minorities] in particular.
- **Gender-sensitive?** How do transport patterns vary for women and men, and what are the implications for gender sensitive policy and programmes? How are women engaged in making these decisions?
- **Evidence gaps?** How can research programmes generate and synthesise evidence on gender and other social dimensions of transport? How can country programmes be monitored and evaluated to generate evidence?
- **Multidisciplinary?** How does the programme address multiple objectives including economic growth, socio-cultural and economic concerns (e.g. impact of gender norms on transport use and productive activity)?
- **Capacity and expertise?** Do programme implementation and research partners include expertise in social and poverty analysis (including gender analysis)?
- **Disaggregation of data?** Will the programme collect data disaggregated by sex, age group and income groups (and other relevant social factors, eg. ethnicity)?
- **Pedestrians count?** Does road traffic data include pedestrians [with and without loads]?
- **User engagement?** How will programme and research partners ensure participation from transport sector operators and current and potential road users as well as other key stakeholders [regulators, roads authorities, development agencies] in research design, management, monitoring and evaluation?
- **Social risk mitigation?** How will the programmes or research address effective road safety and resettlement policies (including resettlement associated with climate change), and mitigate other risks?
- **Public works?** How can public work programme that build roads maximise benefits for women, poorest and other excluded groups?
- **New technology?** How can programme managers and researchers harness new technologies to ensure social inclusion in transport? eg. use of cell

phone network expansion for monitoring real-time data such as patterns of bus use by excluded slum dwellers.