Water systems
Health Technical Memorandum
04-01: Addendum

Pseudomonas aeruginosa – advice for augmented care units
Document Purpose
Best Practice Guidance

Gateway Reference
18520

Title
HTM 04-01 - Addendum: Pseudomonas aeruginosa – advice for augmented care units

Author
DH, Estates & facilities

Publication Date
March 2013

Target Audience
NHS Trust CEs, Care Trust CEs, Foundation Trust CEs, Medical Directors, Directors of PH, Directors of Nursing, Allied Health Professionals, Communications Leads, Emergency Care Leads

Circulation List
PCT Cluster CEs, SHA Cluster CEs

Description
This addendum, aimed at all those involved with patient safety and specifically estates and facilities and infection prevention and control teams, focuses on specific additional measures to control/minimise the risk of P. aeruginosa. It may also have relevance to other opportunistic pathogens such as Stenotrophomonas maltophilia, Burkholderia cepacia and atypical mycobacteria.

Cross Ref
N/A

Superseded Docs
Water sources and potential Pseudomonas aeruginosa contamination of taps and water systems Advice for augmented care units

Action Required
N/A

Timing
N/A

Contact Details
Phil Ashcroft
Estates & Facilities
Quarry House
Quarry Hill
LS2 7UE
01132 545620

For Recipient's Use
Water systems
Health Technical Memorandum 04-01: Addendum

Pseudomonas aeruginosa – advice for augmented care units
Contents

Executive summary iv
Glossary and list of abbreviations v

Chapter 1
Introduction 1

Chapter 2
Pseudomonas aeruginosa: overview
Ecology 2
Transmission 2
Source 2
Management of control 3

Chapter 3
Design and selection of water outlets and fittings 4

Chapter 4
Operational management 6
Introduction 6
The Water Safety Group 6
Water safety plans (WSPs) 7
Protecting augmented care patients 10
Sampling and testing for *P. aeruginosa* 11
What to do if a contamination problem is identified 14

Appendix 1 – Best practice advice relating to all clinical wash-hand basins in healthcare facilities 17

Appendix 2 – Types and method of operation of taps and TMVs 18

Appendix 3 – Water sampling 19

Appendix 4 – Microbiological examination of water samples for *P. aeruginosa* 21

Appendix 5 – Example of a typical risk assessment to inform the WSP for augmented care units 25

Appendix 6 – Exemplar *P. aeruginosa* sample sheet 27

References 28
Executive summary

In recent years there has been an increase in published evidence relating to outbreaks and incidents in augmented care units related to *Pseudomonas aeruginosa*. In March 2012, the Department of Health published ‘Water sources and potential *Pseudomonas aeruginosa* contamination of taps and water systems: advice for augmented care units’. This addendum to Health Technical Memorandum 04-01 builds on and supersedes the March 2012 guidance.

The document is concerned with controlling/minimising the risk of morbidity and mortality due to *P. aeruginosa* associated with water outlets and provides guidance on:

- assessing the risk to patients when water systems become contaminated with *P. aeruginosa* or other opportunistic pathogens;
- remedial actions to take when a water system becomes contaminated with *P. aeruginosa*;
- protocols for sampling, testing and monitoring water for *P. aeruginosa*; and
- forming a Water Safety Group (WSG) and developing water safety plans (WSPs).

The guidance is directed towards healthcare organisations providing patient care in augmented care settings. It is specifically aimed at Estates and Facilities departments and infection prevention and control (IPC) teams.

For the purposes of this document, the patient groups in an augmented care setting include:

- those patients who are severely immunosuppressed because of disease or treatment: this will include transplant patients and similar heavily immunosuppressed patients during high-risk periods in their therapy;
- those cared for in units where organ support is necessary, for example critical care (adult paediatric and neonatal), renal, respiratory (may include cystic fibrosis units) or other intensive care situations;
- those patients who have extensive breaches in their dermal integrity and require contact with water as part of their continuing care, such as in those units caring for burns.
Alert organisms: Alert organisms are microorganisms that have the potential to cause harm and disease in individuals and which can cause an outbreak of infection in a hospital environment. An alert organism is identified by the microbiology laboratory and referred to the infection prevention and control (IPC) team for assessment of possible healthcare-associated acquisition and to identify any possible environmental/equipment sources.

Augmented care units/settings: There is no fixed definition of “augmented care”; individual providers may wish to designate a particular service as one where water quality must be of a higher microbiological standard than that provided by the supplier. While this document provides broad guidance, the water quality required will be dependent on both the type of patient and its intended use. Most care that is designated as augmented will be that where medical/nursing procedures render the patients susceptible to invasive disease from environmental and opportunistic pathogens such as *Pseudomonas aeruginosa* and other alert organisms. In broad terms, these patient groups will include:

a. those patients who are severely immunosuppressed because of disease or treatment: this will include transplant patients and similar heavily immunosuppressed patients during high-risk periods in their therapy;

b. those cared for in units where organ support is necessary, for example critical care (adult paediatric and neonatal), renal, respiratory (may include cystic fibrosis units) or other intensive care situations;

c. those patients who have extensive breaches in their dermal integrity and require contact with water as part of their continuing care, such as in those units caring for burns.

Biofilm: A biofilm is a complex layer of microorganisms that have attached and grown on a surface. This form of growth provides a niche environment for a wide range of microorganisms to interact and where the secretion of exopolysaccharides by bacteria will form an extracellular matrix for both bacteria and other unicellular organisms such as amoebae and flagellates to remain in a protected state.

Blind end (or dead end): A length of pipe closed at one end through which no water passes.

Colonial forming unit: Unit that gives rise to a bacterial colony when grown on a solid medium; this may be a single bacterial cell or a clump of cells.

Dead-leg: A pipe supplying water to a fitting through which water flows only when there is draw-off from the fitting.

Estate and Facilities management: This title embraces the healthcare facilities themselves and the engineering and many other services contained therein. Maintenance and management of the buildings and engineering services is often referred to as “hard” FM (facilities management); activities such as catering, cleaning, sterile supply services, laundry and linen supply is often referred to as “soft” FM.

Flow straightener: A device inserted into the spout outlet of a tap to modify flow, take out turbulence and create an even stream of water (see photograph below).

Point-of-use filter: A device comprising a filter membrane that is fitted to water outlets such as taps and showers at the point of water delivery to retain bacteria.
Remediation: Any process that reduces the risk from harmful agents such as microorganisms.

Transmission: Any mechanism by which an infectious agent is spread from a person or environmental source to a susceptible person.

Water outlet: (In this document) refers mainly to taps and showerheads, but other outlets, as indicated by risk assessments, may be considered important.

Water Safety Group (WSG): A multidisciplinary group formed to undertake the commissioning and development of the water safety plan (WSP). It also advises on the remedial action required when water systems or outlets are found to be contaminated and the risk to susceptible patients is increased.

Water safety plan (WSP): A risk-management approach to the microbiological safety of water that establishes good practices in local water distribution and supply. It will identify potential microbiological hazards caused by *P. aeruginosa* and other opportunistic pathogens, consider practical aspects, and detail appropriate control measures. WSPs are working documents that need to be kept up-to-date and reviewed whenever organisations make changes to water supplies, uses of water and control measures.

Water supply [to the hospital]: The water supplied can be via:

- the mains water supply from the local water undertaker (water company);
- a hospital borehole;
- a combination of mains water and borehole supply;
- emergency water provision (bulk tankered water or bottled drinking water).

For definition of taps/TMVs, see Appendix 2.

List of abbreviations

- **cfu**: colony forming units
- **DIPC**: director of infection prevention and control
- **HCAI Code of Practice**: ‘The Health and Social Care Act 2008: Code of Practice on the prevention and control of infections and related guidance’
- **IPC**: infection prevention and control
- **MCA**: milk cetrimide agar
- **MRD**: maximum recovery diluent
- **PFI**: private finance initiative
- **PHE**: Public Health England
- **POU**: point-of-use
- **TMV**: thermostatic mixing valve
- **WRAS**: Water Regulations Advisory Scheme
- **WSG**: Water Safety Group
- **WSP**: water safety plan
1.0 Introduction

1.1 This addendum to Health Technical Memorandum 04-01 is aimed at those involved with patient safety and specifically Estates and Facilities and infection prevention and control (IPC) teams.

1.2 It focuses on the specific additional measures to control/minimise the risk of *P. aeruginosa*, but may also have relevance to other opportunistic pathogens such as *Stenotrophomonas maltophilia*, *Burkholderia cepacia* and atypical mycobacteria.

1.3 The recommendations for the control of *Legionella* etc given in Health Technical Memorandum 04-01 remain extant.

1.4 Additional general requirements for the quality assurance of water systems including those within healthcare facilities should be followed (see the Health & Safety Executive’s ‘Legionnaire’s disease: the control of legionella bacteria in water systems – Approved Code of Practice and guidance’ and the NHS Premises Assurance Model).

NHS Premises Assurance Model

The NHS has developed, with the support of the Department of Health, the NHS Premises Assurance Model (NHS PAM), whose remit is to provide assurance for the healthcare environment and to ensure service-users are protected against risks associated with such hazards as unsafe premises.

It allows NHS organisations to better understand the effectiveness, quality and safety with which they manage their estate (including water safety) and how that links to the patient experience.

NHS PAM has been designed to apply to:

- NHS foundation trusts;
- NHS trusts;
- mental health trusts;
- ambulance trusts; and
- community trusts.

For more information on how to use the tool, visit http://www.dh.gov.uk/health/2013/01/nhs-pam
2.0 *Pseudomonas aeruginosa*: overview

Ecology

2.1 *P. aeruginosa* is a Gram-negative bacterium, commonly found in wet or moist environments. It is commonly associated with disease in humans with the potential to cause infections in almost any organ or tissue, especially in patients compromised by underlying disease, age or immune deficiency (see paragraph 2.3). Its significance as a pathogen is exacerbated by its resistance to antibiotics, virulence factors and its ability to adapt to a wide range of environments.

2.2 *P. aeruginosa* thrives in relatively nutrient-poor environments at a range of different temperatures and can become one of the species in biofilms where a slime layer binds a mixed bacterial population to surfaces. Although most bacteria will remain fixed within the biofilm, some will become detached resulting in free-floating (planktonic) forms that can cause contamination of the water layer above the biofilm.

Transmission

2.3 *P. aeruginosa* is an opportunistic pathogen that can colonise and cause infection in patients who are immunocompromised or whose defences have been breached (for example, via a surgical site, tracheostomy or indwelling medical device such as a vascular catheter). In most cases, colonisation will precede infection. Some colonised patients will remain well but can act as sources for colonisation and infection of other patients. As a microorganism that is often found in water, the more frequent the direct or indirect contact between a susceptible patient and contaminated water, and the greater the microbial contamination of the water, then the higher the potential for patient colonisation or infection.

2.4 Contaminated water in a hospital setting can transmit *P. aeruginosa* to patients through the following ways:

- direct contact with the water through:
 - ingesting
 - bathing
 - contact with mucous membranes or surgical site, or
 - through splashing from water outlets or basins (where the flow from the outlet causes splashback from the surface);
- inhalation of aerosols from respiratory equipment, devices that produce an aerosol or open suctioning of wound irrigations;
- medical devices/equipment rinsed with contaminated water;
- indirect contact via healthcare workers’ hands following washing hands in contaminated water, from surfaces contaminated with water or from contaminated equipment such as reusable wash-bowls.

Source

2.5 It is generally accepted in the case of *Legionella* that the source of bacteria in hot- and cold-water systems is the incoming water supply and that it becomes a problem only if there is a failure of the recommended control measures (for example, maintenance of temperatures or water treatment regimens).

2.6 In contrast to *Legionella*, the origin of *P. aeruginosa* is less certain. Its presence becomes evident at outlets from the system (for example taps) and can be found within the last two metres before the point of discharge of water. Devices fitted to, or close to, the tap outlet (for example flow straighteners) may exacerbate the problem by providing the nutrients which support microbial growth, providing a surface area for oxygenation of...
water and leaching nutrients. The source, therefore, could be:

- the incoming water supply from the water provider;
- the water supply within the building (both from the storage and distribution system), usually within biofilms;
- the waste-water system (see Breathnach et al. 2012); or
- via external contamination from:
 - clinical areas
 - outlet users
 - poor hygiene or processes during cleaning
 - splashback from contaminated drains.

2.7 Given this variety, the challenge for managers and staff is to risk-assess their particular operational practices in an attempt to minimise inoculation from any of these sources.

Management of control

2.8 Management of water systems to reduce the risk of microbial growth including opportunistic pathogens such as Legionella and P. aeruginosa is vital to patient safety. It requires surveillance and maintenance of control measures including temperature control, usage, cleaning and disinfection measures as identified within the risk assessment and Legionella control scheme for both hot- and cold-water systems.

2.9 To prevent growth of P. aeruginosa, controls are necessary to manage the water system before and after the outlet (comprehensive advice is given in Chapter 4).

2.10 Estates and facilities staff should ensure accurate records and drawings/diagrams showing the layout and operational manuals of the whole water system are available. These staff should have received adequate training and be fully aware of the extent of their responsibilities. Strict adherence to the recommendations in Health Technical Memorandum 04-01 will help to achieve this (see Chapter 4).

2.11 IPC teams should:

- ensure application of, and compliance with, the evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England (see Pratt et al. (2007));
- ensure best practice advice relating to wash-hand basins is followed to minimise the risk of P. aeruginosa contamination (see Appendix 1).

2.12 The ‘Health and Social Care Act 2008: Code of Practice on the prevention and control of infections and related guidance’ (the HCAI code of Practice) sets out the criteria against which a registered provider’s compliance with the requirements relating to cleanliness and infection control will be assessed by the Care Quality Commission. It also provides guidance on how the provider can interpret and meet the registration requirement and comply with the law. Criterion 2 states that providers should provide and maintain a clean and appropriate environment in managed premises that facilitates the prevention and control of infections.

2.13 IPC teams should continue to monitor clinical isolates of P. aeruginosa in risk-assessed augmented care units as an alert organism and be aware of possible outbreaks or clusters of infection with this microorganism.
3.0 Design and selection of water outlets and fittings

3.1 With the change in focus towards improving the patient environment and minimising the risk of healthcare-associated infections, there has been an increase in the provision of single-bed rooms with en-suite facilities. Additionally, to promote good hand hygiene, wash-hand basin provision has increased significantly in all clinical areas. However, in many situations this has led to underused water outlets and low water throughput. Such outlets form a greater risk of contamination by *P. aeruginosa* than those that are used more frequently.

3.2 Water services have become more complex. Every effort should be made when planning, designing and installing new or modified systems to minimise and remove potential hazards (for example oversized water storage tanks, flexible hoses, stagnant water, poor temperature control, long branch pipes and dead-legs), as well as enabling access for monitoring and maintenance. Adapting existing systems to improve safety is almost always the more expensive solution.

3.3 In new and existing premises, therefore, it is essential that the needs of individual patient washing and bathing requirements are carefully considered. In new premises, the provision, correct siting and installation of showers and wash-hand basins, particularly in accommodation where patients are unlikely to make use of them, requires assessment. For existing premises, and subject to a risk assessment, permanent removal of existing outlets and their associated pipework should be considered.

3.4 Tap design has evolved. In older installations, thermostatic control of water temperature was achieved by a separate thermostatic mixing valve (TMV) (commonly called a t-shaped TMV), typically located behind the sanitary assembly panel to which a wash-hand basin or other assembly was fitted, which then supplied water to the hot connection of a manual mixing tap or separate tap (see Figure 4). Many new installations now include taps of a modern design with integral TMVs. They are usually manually controlled (on and off) and can be adjusted to further reduce outlet temperature to fully cold. For some applications, remote sensor-operated taps are available (many sensor taps also have the option of auto-flushing programmes and can be linked to the hospital’s building management system). In some instances these developments have led to a more complicated internal tap design which may increase the need for additional routine maintenance (including decontamination) to mitigate the risk of contamination by *P. aeruginosa*.

3.5 The choice and type of water outlets for the augmented care setting is therefore important (see Appendix 2). This choice should be based on a risk assessment of infection-control and scalding issues.

3.6 There is some evidence that the more complex the design of the outlet assembly (for example, some sensor-operated taps), the more prone to *P. aeruginosa* colonisation the outlet may be (see Berthelot et al. 2006).

3.7 In intensive care and other critical care areas, where patients are unlikely to be able to use the wash-hand basins, the installation of non-TMV mixing taps may be the preferred control option following a risk assessment (see paragraph 1 in Appendix 2).

Note:

For clinical wash-hand basins, Health Building Note 00-10 Part C – ‘Sanitary assemblies’ (formerly Health Technical Memorandum 64) recommends integral thermostatically controlled water using either a single-lever tap or a sensor tap for most applications and settings. If risk assessment justifies a different tap assembly for clinical wash-hand basins in augmented care settings, then derogation from Health Building Note 00-10 Part C may be considered so long as it is approved by the Water Safety Group (WSG).
3.8 In accordance with Health Technical Memorandum 04-01 Part A, TMVs should be fitted where risk assessment has shown vulnerable patients are at risk of scalding. This should be considered when planning/designing new builds or refurbishments. A TMV that is integral to the body of the tap/shower is preferred, as it is designed to always draw cold water through every time the outlet is used, thus helping to minimise the risk of stagnation.

Note:
Scalding risk assessments should form part of the water safety plan (WSP) before any decision is made on the method of scalding risk control (see paragraphs 4.11–4.26).

3.9 Owing to their high surface-area-to-volume ratio and location at the tap outlet, certain designs of flow straightener may present a greater surface area for colonisation and support the growth of organisms. Therefore, when selecting new taps, where possible flow straighteners should be avoided/not included. Health Building Note 00-09 also advises against using aerators in outlets.

3.10 If retro-fitting new taps, it is important to ensure that they are easy to use and practical for the existing space.

3.11 For guidance on replacing taps, see paragraph 4.49(k).
4.0 Operational management

Note:
This addendum focuses on the specific additional measures to control/minimise the risk of *P. aeruginosa*, but may also have relevance to other opportunistic pathogens such as *Stenotrophomonas maltophilia*, *Burkholderia cepacia* and atypical mycobacteria. The recommendations for the control of *Legionella* given in Health Technical Memorandum 04-01 remain extant; however, the operational management processes outlined in this addendum may also assist in the implementation of Health Technical Memorandum 04-01 Part B.

Introduction

4.1 Healthcare organisations have an explicit duty under the Health and Safety at Work Act etc 1974 to assess and manage the risks posed by water systems on their premises. In accordance with the HCAI Code of Practice, the healthcare organisation’s chief executive is responsible for having systems in place to manage and monitor the prevention and control of infection. These systems use risk assessments and consider how susceptible patients are, and any risks that their environment and other users may pose to them. Ensuring these elements are in place will assist the organisation to fulfil its duties in relation to the provision of safe water systems. A programme of audit should be in place to ensure that key policies and practices are being implemented appropriately. This will inform the organisation’s assurance framework.

The Water Safety Group

4.2 The WSG is a multidisciplinary group formed to undertake the commissioning and development of the WSP. It also advises on the remedial action required when water systems or outlets are found to be contaminated and the risk to susceptible patients is increased. The WSG may be a sub-group of the organisation’s infection control committee or other relevant forum and could typically comprise:

- the director of infection prevention and control (DIPC);
- the IPC team;
- consultant medical microbiologist;
- the Estates and Facilities team (including hotel/cleaning services staff and the Responsible Person (Water));
- senior nurses from relevant augmented care units.

The chair of the group will be a local decision.

4.3 Irrespective of who chairs the group, they will be responsible for ensuring it identifies microbiological hazards, assesses risks, identifies and monitors control measures, and develops incident protocols.

4.4 Episodes of colonisation or infection with *P. aeruginosa* that could be related to the water system should be reported by the IPC team to the chair of the WSG, who will be expected to initiate an appropriate investigation.

4.5 The WSG should always act in an appropriate and timely manner. Individual responsibilities should not be restricted by the need to hold formal meetings.

4.6 As part of its wider remit, the WSG should include representatives from areas where water may be used in therapies, medical treatments or decontamination processes (for example, hydrotherapy, renal, sterile services).

Assurance/governance

4.7 The WSG should be accountable to the DIPC and provide reports upwards, for example to the infection control committee (although it is acknowledged that accountability arrangements for the WSG will vary by healthcare provider). Irrespective of the route the healthcare provider decides, it is important that accountability should demonstrate effective governance and assurance.

4.8 The WSG should monitor any proposed developments on the design or installation of the water distribution system and check that they are:
• likely to minimise the risk to patients, especially those treated in augmented care settings;
• compliant with all extant legislation and DH policy and guidance.

4.9 All items of equipment that need to be attached to the water distribution system and which may be used in direct care on patients should be approved by the WSG.

4.10 The WSG will need to ensure that decisions affecting the safety and integrity of the water system do not go ahead without being agreed by them.

Water safety plans (WSPs)

4.11 To assist with understanding and mitigating risks associated with bacterial contamination of water distribution and supply systems and associated equipment, healthcare providers should develop a WSP, which provides a risk-management approach to the microbiological safety of water and establishes good practices in local water usage, distribution and supply (see Figure 1). Those organisations with existing robust water management policies for *Legionella* will already have in place much of the integral requirements for developing a WSP.

4.12 The first step in the development of a WSP is to gain a comprehensive understanding of the water system, including the range of potential hazards, hazardous events and risks that may arise during storage, delivery and use of water. It may require an understanding of the quality and management of the water as provided and how that water is used. Fundamental to this and any subsequent investigation or review is the provision and availability of accurate records/schematic drawings.

4.13 With respect to *P. aeruginosa*, the WSP should identify areas within hospitals with at-risk patients and incorporate:

• clinical risk assessment to identify those settings where patients are at significant risk from *P. aeruginosa* contamination associated with water use and its distribution system;
• an engineering risk assessment of the water system;
• operational monitoring of control measures;
• links to clinical surveillance which can offer an early warning of poor water quality;
• plans for the sampling and microbiological testing of water in identified at-risk units (see Appendices 3 and 4).

Note:

Appendix 4 has been developed to provide technical guidance for a range of laboratories, including NHS, Public Health England (PHE) and commercial laboratories that have the capability and capacity to undertake water sampling and testing.

Note:

Appendix 4 has been developed to provide technical guidance for a range of laboratories, including NHS, Public Health England (PHE) and commercial laboratories that have the capability and capacity to undertake water sampling and testing.

7
Figure 1 Documentation of management procedures (adapted from Figure 4.1 in WHO’s ‘Water safety in buildings’)

- Description of water system

- System risk assessments
 - Identification of potential hazards
 - Determine existing control measures
 - Assess and prioritise risks
 - Identify additional or improved control measures

- Controlling risks
 - Implement and maintain monitoring and control measures
 - Define corrective actions

- Verification and auditing

- Supportive training and review programmes

- Periodic review (at least annually)
4.14 The WSP should identify potential alert organisms and microbiological hazards caused by *Legionella*, *P. aeruginosa* and other opportunistic pathogens, consider practical aspects and detail appropriate control measures. The implementation of the WSP should be coordinated by the Responsible Person (Water). Implementation status reports should be periodically submitted to the WSG.

4.15 Development of the WSP will complement the existing operational management requirements of Health Technical Memorandum 04-01 and the work that has to be undertaken to fulfil the statutory requirement for a *Legionella* risk assessment and written scheme for its control and management.

4.16 The multidisciplinary group that developed the WSP also has a role in advising on the remedial action and communication required, should one or more outlets be found to be contaminated and where this may increase the risks to susceptible patients (see paragraph 4.49).

4.17 WSPs are working documents that need to be kept up-to-date and reviewed at least annually by the WSG and whenever incidents occur or organisations make changes to:

- water supplies and uses;
- control measures;
- its risk-management policies.

Risk assessments

4.18 The risk assessments that inform the WSP should identify potential microbiological hazards caused by *P. aeruginosa* and other opportunistic pathogens, and the hazardous events and risks that may arise during storage, delivery and use of water in augmented care settings.

4.19 They should identify actions to minimise these risks and ensure that appropriate sampling, monitoring and clinical surveillance arrangements are in place.

4.20 Risk assessments should be led by the DIPC, a consultant microbiologist or the IPC team representative and should consider:

- the susceptibility of patients from each type of water use (including ice);
- scalding risk;
- clinical practice where water may come into contact with patients and their invasive devices;
- the cleaning of patient equipment;
- the disposal of blood, body fluids and patients’ wash-water;
- the maintenance and cleaning of wash-hand basins and associated taps, specialist baths and other water outlets;
- change in use (for example, clinical area changed to office accommodation or vice-versa) due to refurbishment or operational necessity;
- other devices that increase/decrease the temperature of water (for example, ice-making machines, water chillers) which may not be appropriate in augmented care settings;
- engineering assessment of water systems, including correct design installation, commissioning, maintenance and verification of the effectiveness of control measures (see also the Water Supply (Water Fittings) Regulations);
- underused outlets;
- flushing policy;
- the unnecessary use of flexible hoses and any containing inappropriate lining materials;
- sampling, monitoring and testing programme that needs to be put in place;
- the need for outlets at wash-hand basins that use sensor operation and TMVs (remote/integral);
- education and training.

4.21 Although not under the category of augmented care, situations will arise where surgical wounds may become contaminated from water outlets such as showers. Similarly the practice of soaking leg ulcers or syringing ears may require consideration of the microbiological quality of water used and will require local assessment.

4.22 The likelihood of hazardous events is influenced by the size and complexity of the water system and can be exacerbated by poor or over-
complicated design, construction, commissioning, operation and maintenance (see Chapter 3).

4.23 Once potential hazards and hazardous events have been identified, the severity of risk needs to be assessed so that priorities for risk management can be established. The risk assessment needs to consider the likelihood and severity of hazards and hazardous events in the context of exposure (type, extent and frequency) and the vulnerability of those exposed. Although many hazards may threaten water quality, not all will represent a high risk. The aim should be to distinguish between high and low risks so that attention can be focused on mitigating risks that are more likely to cause harm to susceptible patients who are experiencing augmented care (see Appendix 5 for an example risk assessment).

Action plan
4.24 When the risks have been identified, an action plan needs to be developed with defined roles and responsibilities, and agreed timescales to minimise these risks. The action plan should include:

- appropriate remedial actions, monitoring details and schedules for validation that show the remedial actions are effective and subject to ongoing verification. Completion dates should be defined.
- any training and competency issues required to ensure compliance with this guidance.

Documentation
4.25 All records pertaining to the risk assessment and action plan should be held and managed by the WSG.

Management of water safety risks and issues
4.26 Identified water safety risks and issues should be assessed, prioritised and included on a risk register for discussion and management by the WSG.

Protecting augmented care patients
4.27 The following paragraphs give examples of best practice advice aimed at protecting the susceptible patient and ensuring a safe environment:

a. For direct contact with patients, water of a known satisfactory quality should be used, that is:

(i) water where testing has shown absence of P. aeruginosa; or
(ii) water supplied through a point-of-use (POU) filter; or
(iii) sterile water (for example, for skin contact for babies in neonatal intensive care units).

b. Water outlets should be reviewed where there may be direct or non-direct contact with patients. This may also include reviewing the need for the outlets/showers and their potential removal.

c. For patient hygiene, single-use wipes should be considered.

d. Rigorous reinforcement of standard infection control practices, including refresher training, should be implemented.

e. The cleaning of clinical wash-hand basins and the taps should be undertaken in a way that does not allow cross-contamination from a bacterial source to the tap (see Appendix 1).

f. The cleaning of patient contact equipment (for example, tap handles, incubators, humidifiers, nebulisers and respiratory equipment) should be reviewed. Options would be to:

(i) use single-use equipment;
(ii) if locally reprocessed – even if used on the same patient – clean equipment with water of a known satisfactory quality (see (a) above);
(iii) use single-use detergent wipes for cleaning incubators. If a disinfectant is used, it is important that it will not cause damage to the material of the incubator. Manufacturers’ instructions should be followed. Disinfectants should not be used to clean incubators while occupied.

g. All other uses of water on augmented care units should be considered (for example, the use of ice machines, drinking water fountains, bottled water dispensers, wet shaving of patients who have a central venous catheter inserted into the jugular vein and washing patients with indwelling devices) and appropriate action/changes to operational procedures taken.
Notes:

1. Tap water should not be used in neonatal units for the process of defrosting frozen breast milk.
2. Water features should not be installed in augmented care units.

h. All patient equipment should be stored clean, dry and away from potential splashing with water.
i. All preparation areas for aseptic procedures and drug preparation and any associated sterile equipment should not be located where they are at risk of splashing/contamination from water outlets.
j. All taps that are used infrequently on augmented care units should be flushed regularly (at least daily in the morning for one minute). If the outlet is fitted with a POU filter, the filter should not be removed in order to flush the tap unless the manufacturer’s instructions advise otherwise. A record should be kept of when they were flushed. Some taps can be programmed to flush automatically; such flushing may be recorded on the building management system.
k. TMVs and associated components should be serviced, including descale and decontamination, at recommended intervals (see the TMV approval scheme at http://www.buildcert.com/tmv3.htm).
l. A TMV that is integral to the body of the tap/shower should be considered, as it will always draw cold water through every time the outlet is used, thus helping to minimise the risk of stagnation.
m. Where taps are designed to be easily removed for maintenance purposes, they should be periodically removed for descaling and decontamination and/or placed in a washer-disinfector (subject to the tap manufacturer’s instructions).

n. It should be ensured that:
 (i) accurate records and drawings cover all the hot- and cold-water systems and that they have been updated following any modification;
 (ii) all services are properly labelled such that the individual services can be easily identified;
 (iii) staff who are engaged in the installation, removal and replacement of outlets and associated pipework and fittings are suitably trained to prevent contamination of the outlet and water system.

Sampling and testing for *P. aeruginosa*

Note:
Experience to date has shown no meaningful correlation between the presence and count of *P. aeruginosa* and total viable counts (TVC) of bacteria. Consequently, the determination of TVC need not be done routinely in parallel with testing for *P. aeruginosa*.

P. aeruginosa in the water supply

4.28 *P. aeruginosa* may be present within the water storage, distribution and delivery systems and also in the water supplied to the hospital.

4.29 The sampling protocol (Appendix 3) is intended to help healthcare providers establish whether the water in augmented care units is contaminated with *P. aeruginosa* and, if it is, to help locate its origin and to monitor the efficacy of remedial measures.

4.30 Biofilms exist on plumbing materials throughout the water system. Where present, most *P. aeruginosa* will be found within two metres of the point of water delivery at the outlet – that is, after the water has left the circulation system.

4.31 While most bacteria are trapped within a biofilm, the biofilm will constantly generate bacteria that are released as free-floating individual cells (planktonic forms), and parts of the biofilm may slough off in clumps. The concentration of these planktonic bacteria will build up over time in the
water adjacent to a biofilm when the water is of a low flow rate or stagnant, but will be diluted as water is used and flows through the pipework or tap containing the biofilm.

4.32 It is essential to maximise the recovery of these free-floating planktonic bacteria that cause infection; therefore, water samples should be taken:

a. during a period of, preferably, no use (at least 2 hours or preferably longer); or
b. low use.

4.33 The same water outlet can give very different results if sampled at times of normal use and may be negative if water from the tap has been used before a sample is collected.

4.34 The first water to be delivered from the outlet (pre-flush sample) should be collected to assess the microbial contamination in the outlet.

4.35 If water flows over a biofilm containing \(P. \) \(aeruginosa \) located at or near the outlet, planktonic bacteria arising from that biofilm will be diluted and a subsequent sample will give low bacterial counts. If contamination is upstream in the system, this will not affect bacterial counts.

4.36 The sample obtained after allowing water to flow from an outlet is referred to as a “post-flush” sample (see paragraphs 12 and 13 in Appendix 3). Comparison of counts from pre- and post-flush samples can help locate the source of the \(P. \) \(aeruginosa \). If a pre-flush sample gives a high count, subsequent paired pre- and post-flush samples should be tested to help locate the source of the contamination.

4.37 In order to be able to carry out the appropriate microbiological examinations on a sample and provide a meaningful interpretation of test results, it is essential that samples are collected in the correct manner using the correct equipment and that the sampling protocol in Appendix 3 is adhered to.

4.38 Protocols for microbiological examination of samples are provided in Appendix 4.

Where to sample water outlets

4.39 The water outlets to be sampled should be those that supply water which:

- is used to wash staff hands; or
- used to clean equipment that will have contact with patients as determined by risk assessment.

When and how to sample water outlets

4.40 The outlets identified above should be sampled to provide an initial assessment of contamination levels. There is no need to sample all taps that are due to be sampled on the same occasion; samples can be taken in batches on separate occasions. It may assist the receiving laboratory if the sampling schedule is agreed beforehand (see Figure 2 and also Appendix 3).

Interpretation of \(P. \) \(aeruginosa \) test results

4.41 If test results are satisfactory (not detected), there is no need to repeat sampling for a period of six months unless there are changes in the water distribution and delivery systems components or system configuration (for example, refurbishments that could lead to the creation of dead-legs) or occupancy.

4.42 Water sampling could be undertaken within six months if there are clinical evidence-based suspicions that the water may be a source of patient colonisation or infection (that is, with \(P. \) \(aeruginosa \) or another potentially water-associated pathogen).

4.43 If tests show counts of 1–10 cfu/100 mL, refer to the WSG, who should risk-assess the use of water in the unit. Simultaneously, retesting of the water outlet should be undertaken (see Figure 2 and Note below).

4.44 If test results are not satisfactory (>10 cfu/100 mL), further sampling along with an engineering survey of the water system could be used to identify problem areas and modifications that may be implemented to improve water quality.

4.45 After such interventions, the water should be resampled (see Figure 2 for suggested frequencies).

Note:

Figure 2 gives an example of sampling frequencies. Sampling may be undertaken more frequently according to the risk assessment. It is important that samples are taken as described in Appendix 3 to avoid false negatives.
Interpretation of pre- and post-flush counts

4.46 High counts in pre-flush samples but with low counts or none detected at post-flush could indicate that areas/fittings at or near the outlets are the source of contamination (see Table 1).

- A few positive outlets, where the majority of outlets are negative, would also indicate that the source of contamination is at or close to the outlet.
- If both pre- and post-flush samples from a particular outlet are >100 cfu/100 mL and other

| Table 1 Interpretation of pre- and post-flush counts |
| High \(P. \) aeruginosa count pre-flush (>10 cfu/100 mL) and low post-flush count (<10 cfu/100 mL) | Suggestive of a local water outlet problem |
| High \(P. \) aeruginosa count pre-flush (>10 cfu/100 mL) and high post-flush count (>10 cfu/100 mL) | Suggestive of a problem not related to a local water outlet but to a wider problem within the water supply system |
Figure 3 Summary of sampling procedure and interpretation of results for *P. aeruginosa*

Samples taken in accordance with agreed written protocols, on behalf of the Estates & Facilities department, and correctly stored (if appropriate) and transported to a laboratory that is capable of processing and testing.

Results returned to nominated Estates & Facilities and IPC teams that are members of the Water Safety Group.

Results requiring action are identified.
Nominated people informed.
Appropriate course of action per outlet is implemented.

- **Not detected**
 - No further action required.

- **1–10 cfu/100 mL**
 - See paragraph 4.43

- **>10 cfu/100 mL**
 - See paragraphs 4.44 and 4.45

4.47 If the sampling indicates that the water services are the problem, then most outlets would possibly be positive and other points in the water system could then be sampled to assess the extent of the problem (see Table 1).

4.48 Figure 3 provides a summary of the sampling procedure and interpretation of results for *P. aeruginosa*.

What to do if a contamination problem is identified

4.49 Should risk assessment or water testing identify contamination with *P. aeruginosa*, the following risk reduction and preventive measures should be considered.

a. If a water outlet has been taken out of service because of contamination with *P. aeruginosa*, continue daily flushing while the outlet is out.
of normal use to prevent water stagnation and exacerbation of the contamination.

b. Where practical, consider removal of flow straighteners. However, the removal of flow straighteners may result in splashing and therefore additional remedial action may need to be taken. If they are seen to be needed, periodically remove them and either clean/disinfect or replace them. Replacement frequency should be verified by sampling/swabbing.

c. Splashing can promote dissemination of organisms, resulting in basin outlets becoming heavily contaminated. If splashing is found to be a problem, investigate the causes. Example causes include:

(i) the tap’s designed flow profile is incompatible with the basin;

(ii) the tap discharges directly into the waste aperture;

(iii) incorrect height between tap outlet and surface of the basin;

(iv) excess water pressure;

(v) a blocked or malfunctioning flow straightener.

d. Hand-washing should be supplemented with the use of antimicrobial hand-rub.

e. To prevent water stagnation, check for underused outlets – assess frequency of usage and if necessary remove underused outlet(s). For example, the provision of showers in areas where patients are predominantly confined to bed, and the resultant lack of use, could lead to stagnation.

f. Check connections to mixing taps to ensure that the supply to the hot connection is not supplied from an upstream TMV. In a hot-water service, a dead-leg will exist between the circulating pipework and hot connection of a fitting such as a mixing tap. In the case of cold-water services, sometimes there will be no draw-off from any part of the system and the entire service is in effect a dead-leg. To minimise the stagnation of water in a cold-water system, it can be beneficial to arrange the pipework run so that it ends at a frequently used outlet. A dead-leg may also exist when a TMV is installed upstream of a mixing tap (see Figure 4). Depending on the activities of the room in which the tap is located, cold water may never be drawn through the pipe between the cold water connections of the mixing valve and mixing tap.

g. Assess the water system for blind ends and dead-legs (for example, where water is supplied to both the cold-water outlet and a TMV supplying an adjacent blended water outlet, as such cold-water outlets in augmented care units may be commonly underused). When removing outlets, the branch hot- and cold-water pipes should also be cut back to the main distribution pipework in order to eliminate blind ends.
h. Assess the water distribution system for non-metallic materials that may be used in items such as inline valves, test points and flexible hoses. They should be replaced according to the guidance in safety alert (DH (2010) 03: ‘Flexible water supply hoses’).

i. All materials must be WRAS-approved and must not leach chemicals that provide nutrients that support microbiological growth. Materials should also be compatible with the physical and chemical characteristics of water supplied to the building. Flexible pipes should only be used in exceptional circumstances (for example, where height adjustment is necessary as in installations such as rise-and-fall baths and hand-held showers).

j. POU filters, where they can be fitted, may be used to provide water free of _P. aeruginosa_. Where fitted, regard filters primarily as a temporary measure until a permanent safe engineering solution is developed, although long-term use of such filters may be required in some cases. Where POU filters are fitted to taps, follow the manufacturer’s recommendations for renewal and replacement and note that the outer casing of a POU filter and the inner surface can become contaminated (see Health Technical Memorandum 04-01 Part B).

k. In certain circumstances, the WSG may decide it is necessary to carry out a disinfection of the hot- and cold-water distribution systems that supply the unit to ensure that contaminated outlets are treated. See Health Technical Memorandum 04-01 (Part A Chapter 17) for guidance on how to carry out the disinfection procedure. Note that with respect to _P. aeruginosa_, hyperchlorination is not effective against established biofilms. Consider replacing contaminated taps with new taps; however, there is currently a lack of scientific evidence to suggest that this will provide a long-term solution. When replacing taps, consider fitting:

(i) removable taps;
(ii) taps that are easy to use;
(iii) taps that can be readily dismantled for cleaning and disinfection;
(iv) taps to which a filter can be attached to the spout outlet. Note: Such taps can be used for supplying water for cleaning incubators and other clinical equipment.

Note:

In the event of an outbreak or incident, further advice on the management of _P. aeruginosa_ contamination in water systems can be sought from PHE.
Appendix 1 – Best practice advice relating to all clinical wash-hand basins in healthcare facilities

Notes:
1. Clinical wash-hand basins are particularly high risk. It is therefore important to ensure the cleaning of these basins and the taps is undertaken in a way that does not allow cross-contamination from a bacterial source to the tap. During cleaning of basins and taps, there is a risk of contaminating tap outlets with microorganisms if the same cloth is used to clean the bowl of the basin or surrounding area before the tap. Waste-water drain outlets are particularly risky parts of the basin/system and are almost always contaminated (see Breathnach et al. 2012). Bacteria may be of patient origin, so it is possible that bacteria, including antibiotic-resistant organisms, could seed the outlet, become resident in any biofilm and have the potential to be transmitted to other patients.
2. If POU filters are fitted to taps, the same cleaning regimen applies to the wash-hand basin, but clean the filter itself according to the manufacturer’s instructions. Take care to avoid contaminating the external surface and outlet of the filter.

Use the clinical wash-hand basin only for hand-washing:

a. Do not dispose of body fluids at the clinical wash-hand basin – use the slophopper or sluice in the dirty utility area.

b. Do not wash any patient equipment in clinical wash-hand basins.

c. Do not use clinical wash-hand basins for storing used equipment awaiting decontamination.

d. Do not touch the spout outlet when washing hands.

e. Clean taps before the rest of the clinical wash-hand basin. Do not transfer contamination from wash-hand basin to wash-hand basin.

f. Do not dispose of used environmental cleaning agents at clinical wash-hand basins.

g. Make sure that reusable containers containing environmental cleaning agents are used in a manner that will protect them from contamination with *P. aeruginosa* (see Aumeran et al. 2007; Ehrenkranz et al, 1980; Sautter et al., 1984).

h. Use non-fillable single-use bottles for antimicrobial hand-rub and soap.

i. Consider the appropriate positioning of soap and antimicrobial hand-rub dispensers. The compounds in the products can be a source of nutrients to some microorganisms. Therefore, it is advisable to prevent soiling of the tap by drips from the dispensers or during the movement of hands from the dispensers to the basin when beginning hand-washing.

j. Identify and report any problems or concerns relating to safety, maintenance and cleanliness of wash-hand basins to the WSG. Escalate unresolved issues to higher management and/or the IPC team as appropriate.

Management should ensure that all staff with responsibility for cleaning should be adequately trained and made aware of the importance of high standards of cleanliness. Refresher training should be given where a specific area does not maintain the expected standard of cleanliness. Visual monitoring of domestic staff should be undertaken by means of regular audits.
Appendix 2 – Types and method of operation of taps and TMVs

Manual mixing taps (non-TMV):
1. There are three main types of manual mixing tap:
 - **Single sequential lever operation**. This is the simplest type. As the lever is moved from left to right, or vice-versa, cold water begins to flow and progressively hot water is introduced into the tap body until a fully hot flow is achieved.
 - **Single lever combined temperature and flow control**. This type has a lever that may be moved from left to right to control temperature and raised and lowered to control and turn on and off the water flow.
 - **Dual lever**. This type has separate lever controls for both the hot and cold water supply to the mixed temperature outlet. As these taps are not normally accessible to patients, the provision of a thermostatic control may be seen as unnecessary.

 Note: The decision whether to install a TMV in areas not normally accessible to patients should be based on a risk assessment (see paragraphs 4.11–4.26). If the risk assessment determines that there is a potential scalding risk, the manual mixing tap should be:

 a. preceded by a TMV to ensure that the hot water at the point of discharge is supplied at a safe temperature;
 b. a “Type 1” tap, which incorporates a maximum temperature stop to ensure both hot and cold supplies are always flushed.

 See **Note after paragraph 3.7**.

Sensor-operated tap
2. This is essentially an outlet spout of a tap with no manual lever or controls. On/off control of water is by means of a solenoid valve that is activated by an infrared or similar sensor to detect the presence of the user. (Some taps require the metal surface of the spout to be touched.) Water temperature is controlled by a TMV fitted upstream or downstream of the solenoid valve.

Thermostatic mixing tap
3. These are often referred to as mixing taps with integral TMVs. They contain an automatic temperature-controlling device such as a TMV but have an operating mechanism to adjust temperature from fully cold to the maximum pre-set blended water temperature permitted by the automatic device. In the event of failure of the cold water supply, the mixed/blended temperature outlet port will be automatically closed to prevent high water temperature being discharged. The operating mechanism can also control and turn on/off the water flow. They can also be separate mechanisms, functioning independently, with one actuating the flow of mixed water at a fixed temperature and the other actuating the flow of cold water.

Thermostatic mixing valve (TMV)
4. TMVs are typically configured as a t-shaped device with opposing hot and cold water inlets and a mixed/blended temperature water outlet (see paragraph 4.49(f)). They are pre-set to deliver a fixed temperature and, in the event of failure of the cold-water supply pressure, will automatically close to prevent discharge of excessively hot water at the outlet.

Guidance on the selection of taps and basins used in healthcare is given in Health Building Note 00-10 Part C – ‘Sanitary assemblies’.

For more information on the TMV approval scheme, visit BuildCert at http://www.buildcert.com/tmv3.htm.

Information on the construction and operation of taps/TMVs used in healthcare can be found on the TMVA website (http://www.tmva.org.uk).
Appendix 3 – Water sampling

1. Sampling should be undertaken by staff trained in the appropriate technique for taking water samples including the use of aseptic technique to minimise extraneous contamination. The method used in this guidance may differ from the collection of water samples for other purposes (for example, for sampling *Legionella*).

2. Carefully label samples such that the outlet can be clearly identified; system schematics indicating each numbered outlet to be sampled can be helpful in this respect.

3. The main strategy for sampling is to take the first sample of water (pre-flush) delivered from a tap at a time of no use (at least 2 hours or preferably longer) or, if that is not possible, during a time of its lowest usage. This will normally mean sampling in the early morning, although a variety of use patterns may need to be taken into account.

4. Disinfectants in the water, such as chlorine or chlorine dioxide, will have residual activity after taking the sample and may inactivate bacteria in the sample prior to its processing. To preserve the microbial content of the sample, neutralise oxidising biocides by dosing the sample bottle with 18 mg of sodium thiosulphate (equating to 18 mg/L in the final sample, which will neutralise up to 50 ppm hypochlorite). Sterile bottles are normally purchased containing the neutraliser. EDTA (ethylenediaminetetraacetic acid) may be used as a neutraliser for systems treated with copper and silver ions (BS 7592). The relevant Health & Safety Executive's advice regarding the use of elemental copper as biocide should be consulted (http://www.hse.gov.uk/legionnaires/faqs.htm#silver-copper-systems). Where disinfectants are being applied to the water system, take advice on the appropriate neutralisers to use.

5. The tap should not be disinfected by heat or chemicals before sampling (pre- or post-flush – see paragraph 12), nor should it be cleaned or disinfected immediately before sampling.

6. Label a sterile collection vessel (200–1000 mL volume) containing a suitable neutraliser for any biocide the water may contain. The labelling information should contain details of the tap location, sender’s reference, pre- or post-flush (see paragraph 12), person sampling, date and time of sampling.

7. If *P. aeruginosa* has been found in a pre-flush sample, take a second paired set of samples. The first would be a pre-flush sample as before. Run the tap for two minutes and take a second identical post-flush sample. Bacteria in this second sample (termed post-flush) are more likely to originate further back in the water system. A substantially higher bacterial count in the pre-flush sample, compared with the post-flush, should direct remedial measures towards the tap and associated pipework and fittings near to that outlet. A similar bacterial count in pre-flush and post-flush samples indicates that attention should focus on the whole water supply, storage and distribution system. A more extensive sampling regimen should be considered throughout the water distribution system, particularly if that result is obtained from a number of outlets.

8. Although water sampling is the principal means of sampling, there may be occasions when water samples cannot be obtained immediately for analysis. In the event of a suspected outbreak, swabbing water outlets (as per section 5.4 of the Standing Committee of Analysts’ (SCA) 2010 guidance) to obtain strains for typing may provide a means of assessing a water outlet, but this does not replace water sampling (see paragraph 15 on swabbing).

Procedure for obtaining the samples

9. Pre-flush sample: Aseptically (that is, without touching the screw thread, inside of the cap or inside of the collection vessel) collect at least 200 mL water in a sterile collection vessel containing neutraliser. EDTA (ethylenediaminetetraacetic acid) may be used as a neutraliser for systems treated with copper and silver ions (BS 7592). The relevant Health & Safety Executive's advice regarding the use of elemental copper as biocide should be consulted (http://www.hse.gov.uk/legionnaires/faqs.htm#silver-copper-systems). Where disinfectants are being applied to the water system, take advice on the appropriate neutralisers to use.

10. Dependent upon the water distribution system design, and the type of water outlet, the water feed to the outlet may be provided by:

- a separate cold-water supply and hot-water supply to separate outlets;
- a separate cold-water supply and hot-water supply, which may have its final temperature controlled by the use of an integral TMV within the outlet; or
Collect at least 200 mL water in a sterile collection vessel

- a separate cold-water and a pre-blended hot-water supply that has had its temperature reduced by a TMV prior to delivery to the outlet.

11. For separate hot- and cold-water outlets, each outlet is individually tested with its own collection vessel and outlet identifier. For blended outlets (that is, where both hot and cold water come out of the same outlet):

- sample water with the mixing tap set to the fully cold position using an individual collection vessel and outlet identifier, and note the temperature setting;
- sample the blended outlet set to the maximum available hot-water temperature using an individual collection vessel and outlet identifier, and note the temperature setting.

12. Post-flush sample: where this is required, allow the water to flow from the tap for 2 minutes (see above) before collecting at least 200 mL water in a sterile collection vessel with neutraliser. Replace the cap and invert or shake to mix the neutraliser with the collected water. This sample, when taken together with the pre-flush sample, will indicate whether the tap outlet and its associated components is contaminated or if the contamination is remote from the point of delivery (see Table 1).

13. If a sample from a shower is required, then place a sterile bag over the outlet. Using sterile scissors, cut a small section off the corner and collect the sample in a sampling container (see PHE’s (2013) ‘Guidelines for the collection, microbiological examination and interpretation of results from food, water and environmental samples taken from the healthcare environment’ (forthcoming)). Appropriate precautions should be taken to minimise aerosol production as described in BS 7592.

14. The collected water should be processed within 2 hours. If that is not possible, then it should be refrigerated within 2 hours and kept at 2–8°C and processed within 24 hours.

15. To take a swab sample, remove a sterile swab from its container and insert the tip into the nozzle of the tap. Care should be taken to ensure no other surfaces come into contact with the tip of the swab. Rub the swab around – that is, move it backwards and forwards and up and down, as much as possible, on the inside surface of the tap outlet or flow straightener (see photograph). Replace the swab carefully in its container, again ensuring no other surfaces come into contact with the tip of the swab. Place the swab in a transport medium or maximum recovery diluent (MRD) and send to the laboratory.
Appendix 4 – Microbiological examination of water samples for *P. aeruginosa*

Notes:
This appendix has been developed to provide technical guidance for a range of laboratories (including NHS, PHE and commercial laboratories) that have the capability and capacity to undertake water sampling and testing.

Alternative water-testing methods other than filtration that can show equivalence and/or improvement on the sensitivity and enumeration of *P. aeruginosa* are also acceptable.

An oxidase test alone is not sufficiently specific to identify *P. aeruginosa*.

Definition
1. *P. aeruginosa* are Gram-negative, oxidase-positive bacteria that, in the context of this method, grow on selective media containing cetrimide (cetyl trimethylammonium bromide), usually produce pyocyanin, fluoresce under ultraviolet light 360 ± 20 nm, and hydrolyse casein. *P. aeruginosa* needs to be identified by the following methods – identification by a positive oxidase test alone is insufficient.

Testing principle
2. A measured volume of the sample or a dilution of the sample is filtered through a membrane filter (≤0.45 microns) to retain bacteria and the filter is then placed on a solid selective and differential medium.

3. CN agar contains cetyl trimethylammonium bromide and nalidixic acid at concentrations that will inhibit the growth of bacteria other than *P. aeruginosa*. Other selective and differential agars are available and acceptable if validated.

4. The membrane is incubated on a selective/differential agar and characteristic colonies are counted. Confirmatory tests are carried out where necessary (see paragraph 15) and the result is calculated as the colony count per 100 mL of water.

5. *P. aeruginosa* usually produces characteristic blue-green or brown colonies when incubated at 37°C for up to 48 hours. Confirmation of isolates is by sub-culture to milk agar supplemented with cetyl trimethylammonium bromide (commercially available) to demonstrate hydrolysis of casein.

Sample preparation and dilutions
6. Water samples should be received and handled as described in the SCAs’ 2002 guidance (currently under review). For example, samples should be examined as soon as is practicable on the day of collection. In exceptional circumstances, if there is a delay, store at 2–8°C and do not exceed 24 hours before the commencement of analysis.

Filtration and incubation
7. Aseptically measure and dispense 100 mL of water sample into the sterile filter-holder funnel. If the funnel is graduated to indicate volume, this can also serve to measure the volume.

8. If high bacterial numbers are present in water samples, it may be impossible to count individual colonies accurately on the filter membrane. Therefore, if high counts are expected, a range of dilutions made in sterile diluent (water, MRD or similar) can be processed in parallel with the undiluted sample. An example of this would be a 1-in-10 and a 1-in-100 dilution processed as well as an undiluted sample. Filtration of 10 mL rather than 100 mL is an alternative to filtering 100 mL of a 1-in-10 solution.

9. Draw the water sample through the filter.

10. Aseptically place the membrane onto the pseudomonas selective and differential agar (see paragraph 3) and incubate aerobically at 37°C.
Counting of colonies

11. Examine plates after 22 hours ± 4 hours and 44 hours ± 4 hours of incubation.

12. Count all colonies that produce a green/blue (demonstrating pyocyanin production), or reddish-brown pigment and those which fluoresce under ultraviolet light (optional). Exposure of colonies to daylight for 2–4 hours enhances pigment production. When there is a moderately heavy growth of \(P. \) aeruginosa and other organisms on the membrane, colonies adjacent to pyocyanin-producing colonies of \(P. \) aeruginosa can also appear green after 44 hours ± 4 hours of incubation, making the interpretation of the count difficult. Observing the plates after 22 hours ± 4 hours assists in the interpretation in these instances.

![Plate showing high counts of pyocyanin-producing colonies of \(P. \) aeruginosa](image)

Processing of swabs

13. Swabs can show presence of \(P. \) aeruginosa but will not provide equivalent quantitative results as water sampling. They can be used to show the presence or absence of \(P. \) aeruginosa at the outlet.

14. In the laboratory, use the swab to inoculate a portion of an agar plate that is selective and differential for \(P. \) aeruginosa (see [paragraphs 2 and 3]). Streak the inoculum on the plate as for a clinical sample. Incubate as described for filter samples above. Alternatively, after sampling, place the swab in 10 mL MRD, vortex, then plate out (using serial dilution) on the appropriate media and incubate as above.

Confirmatory tests

15. Colonies that clearly produce pyocyanin (green/blue pigmented) on the membrane are considered to be \(P. \) aeruginosa and require no further testing. Other colonies which fluoresce or are red/brown require confirmation. If more than one volume or dilution has been filtered, proceed if possible with the membrane yielding 20–80 colonies to enable optimum identification and accurate enumeration of colonies. Where there is doubt, perform additional tests to yield reliable species identification.

16. To confirm other colonies, subculture from the membrane onto a milk cetrimide agar (MCA) plate and incubate at 37°C for 22 hours ± 4 hours. Examine the plates for growth, pigment, fluorescence and casein hydrolysis (clearing medium’s opacity around the colonies). If pigment production is poor, expose the MCA to daylight at room temperature for 2–4 hours to enhance pigment production and re-examine.

17. \(P. \) aeruginosa is oxidase-positive, hydrolyses casein and produces pyocyanin and/or fluorescence. Occasionally atypical non-pigmented variants of \(P. \) aeruginosa occur. A pyocyanin-negative, casein-hydrolysis-positive, fluorescence-positive culture should be regarded as \(P. \) aeruginosa. Additional tests may be necessary to differentiate non-pigmented \(P. \) aeruginosa from \(P. \) fluorescens (such as growth at 42°C or resistance to C-390, 9-chloro-9-(4-diethylaminophenyl)-10-phenylacridan or phenanthroline or more extensive biochemical tests).

Table A1

<table>
<thead>
<tr>
<th>Colony on CN agar</th>
<th>Oxidase test</th>
<th>Fluorescing on MCA</th>
<th>Caseinolytic on MCA</th>
<th>Confirmed (P.) aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue or green</td>
<td>+</td>
<td>NT</td>
<td>NT</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluorescing and not pigmented</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>Reddish brown non-fluorescing</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NT = No testing necessary
Retention of *P. aeruginosa* isolates

18. Where an investigation into clinical infections is underway, inform the testing laboratory that the isolates of *P. aeruginosa* and associated sampling location information should be retained for a minimum of three months as they may be required for typing at a later date.

19. It will then be the responsibility of the testing laboratory to ensure that these isolates are supplied to the typing laboratory (for example, PHE at Colindale) when requested, and this should be written into the contract for testing.

Calculation of results

20. Express the results as colonies of *P. aeruginosa* per 100 mL of the undiluted sample, for example:

- for 100 mL sample – the count on the membrane;
- for 10 mL of sample – the count on the membrane multiplied by 10;
- for 1 mL of sample – the count on the membrane multiplied by 100.

Reporting

21. If *P. aeruginosa* is not detected, report as “Not detected in 100 mL”.

22. If the test organism is present, report as the number of *P. aeruginosa* per 100 mL. Reports should be specific to *P. aeruginosa*, and not generic *Pseudomonas* species.

23. The sample reference originally submitted should be reported with each result.

Microbiological typing

24. Water and/or tap-swab isolates being sent to PHE’s Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit for molecular analysis of *P. aeruginosa* should only be referred if the isolates have been confirmed to be *P. aeruginosa* and if there is a possible link to the outbreak strain under investigation.

25. Referrals of *P. aeruginosa* isolates for typing should only be sent after consultation with the typing laboratory.

26. Where many taps are positive for *P. aeruginosa*, send one colony of the *P. aeruginosa* from each water sample. Save the primary isolation plate for possible further examination once the results of typing are known and have been discussed with the typing laboratory. Analysis of results to date has consistently shown that multiple picks have been representatives of the same strain; since multiple taps are being sampled, an idea of the extent of homogeneity or otherwise will still be gained where only one colony is sent from each water sample.

27. If only two or three taps are positive for *P. aeruginosa*, then send two separate colony picks of confirmed *P. aeruginosa* from the primary plate per water sample to AMRHAI (taking the stipulations in paragraph 25 into account). Label these clearly as being from the same water sample (so that AMRHAI can accumulate data on how common mixed strains are seen in the same tap water).

28. It is important that the request forms have information about the links between tap water and cases as illustrated in the following examples:

 a. water from tap in room “A” ref patient “X”;
 b. water from tap in sluice room;
 c. tap water from room “C” with no cases.

29. It is important to recognise that there are some types of *P. aeruginosa* that are relatively commonly found in the environment and among patient samples globally. These include the PA14 clone and clone C; a match between patient and water samples with these strains is not necessarily evidence of transmission between the two.
Filter

Aseptically place the membrane onto the pseudomonas selective and differential agar and incubate at 37°C; examine after 22 hours ± 4 hours and 44 hours ± 4 hours

Count all colonies that produce a green/blue or reddish-brown pigment and those that fluoresce under UV light (optional)

Subculture non-pyocyanin-producing (green/blue) colonies to MCA and incubate at 37°C for 22 ± 4 hours

Examine the plates for growth, pigment, fluorescence and casein hydrolysis. If pigment production is poor, expose the MCA to daylight at room temperature for 2–4 hours to enhance pigment production and re-examine

Calculate confirmed count and report as *P. aeruginosa*
Appendix 5 – Example of a typical risk assessment to inform the WSP for augmented care units

<table>
<thead>
<tr>
<th>Description of the hazards</th>
<th>Persons affected by the work activity and how</th>
<th>Existing controls</th>
<th>Likelihood</th>
<th>Impact</th>
<th>Risk rating</th>
</tr>
</thead>
</table>
| Infection/colonisation with *Pseudomonas aeruginosa* from contaminated water | Susceptible patients within augmented care units | **USE OF WATER:**
For direct contact with patients, water of a known satisfactory quality is used:
- water where testing has shown absence of *P. aeruginosa*; or
- water supplied through a point-of-use (POU) filter; or
- sterile water (for skin contact for babies in neonatal intensive care units).
ENGINEERING ASSESSMENT OF WATER SYSTEMS:
- Correct installation and commissioning of water systems in line with HTM 04-01 is adhered to
- Schematic drawings are available for water systems.
FLUSHING:
- Flushing of water outlets is carried out and documented.
SAMPLING:
- Plans for the sampling and microbiological testing of water are in place. | (Names/titles): Note to reader: This is an example risk assessment. The control measures outlined are not exhaustive but are for illustrative purposes only. Each healthcare provider will have its own risks and will need to carry out a risk assessment based on these risks (see paragraphs 4.18-4.23 for examples of other risks and further guidance). |

(See risk scoring matrix on next page)
Risk scoring matrix

Risk scoring: Use the grid below to achieve and overall score for the risk by measuring across for the impact and down for the likelihood.

<table>
<thead>
<tr>
<th>LIKELIHOOD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Key
- **Green** Low
- **Amber** Medium
- **Red** High

The resulting **action plan** should include:

- Sources of information/persons consulted
- Further action if necessary to control the risk
- Person/s responsible for coordinating implementation of the action.
- Recommended timescales
- Date completed
- Revised risk rating
Appendix 6 – Exemplar *P. aeruginosa* sample sheet

Hospital/site: St Lukes
Building: East Wing
Faculty/department/ward: 12
Time sample taken: 07.00
Date: 20 February 2013
Name of sampler (print): J. JONES

Bacterial species: *Pseudomonas aeruginosa*

Note: The tap should not be cleaned or disinfected by heat or chemicals immediately before sampling.

<table>
<thead>
<tr>
<th>Room No.</th>
<th>Room name</th>
<th>Outlet type</th>
<th>Outlet ID No.</th>
<th>Pre-flush sample</th>
<th>Post-flush sample</th>
<th>Sample's barcode (affix adjacent to sample details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Neonatal ICU:</td>
<td>-WHB - Mixer</td>
<td>-001</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-WHB - Mixer</td>
<td>-002</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Neonatal ICU clean utility:</td>
<td>-WHB - Mixer</td>
<td>-003</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Sink - H/C lever-op</td>
<td>-004</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

Refer to Appendix 3 in HTM 04-01 ‘Addendum: *Pseudomonas aeruginosa* – advice for augmented care units’ for detailed advice on obtaining samples correctly.
References

Acts and regulations
Health and Safety at Work etc. Act 1974.

Water Supply (Water Quality) Regulations 2000 (as amended).

British Standards

Health Building Notes
Health Building Note 00-09. Infection control in the built environment. 2013.

Health Building Note 00-10 Part C. Sanitary assemblies. 2013.

Health Technical Memoranda
Health Technical Memorandum 04-01 Part A. The control of Legionella, hygiene, “safe” hot water, cold water and drinking water systems: design, installation and testing. 2006.

Other DH publications

http://www.dh.gov.uk/health/2013/01/nhs-pam

Other publications

